Periodic Nanopillar N-I-P Amorphous Si Photovoltaic Cells Using Carbon Nanotube Scaffolds

2014-09-01
Zhou, Hang
Tao, Fei
Hiralal, Pritesh
Ahnood, Arman
Ünalan, Hüsnü Emrah
Nathan, Arokia
Amaratunga, Gehan A. J.
Arrays of periodic one-dimensional nanomaterials offer tunable optical properties in terms of light-matter interaction which are attractive for designing efficient optoelectronic devices. This paper presents a fabrication of bottom-up grown nanopillar (NP) array solar cells based on n-i-p thin-film amorphous silicon using scaffolds of vertically aligned carbon nanotube (CNT) array. The effects of varying the CNT spacing over the range from 800 to 2000 nm on optical and electrical properties of the solar cells were investigated. The NP solar cell with CNT spacing of 800 nm exhibited 'moth-eye' broadband antireflection behavior, showing an average reflectance value lower than 10%. The enhanced optical absorption translated to significant enhancements in photocurrent and quantum efficiency compared to a conventional planar solar cell under low light condition. The open-circuit voltage (V-oc) of the NP solar cell was found systematically correlated with the CNT spacing and the illumination condition. The results presented here is of importance for developing high efficiency one-dimensional nanostructured solar cells.
IEEE TRANSACTIONS ON NANOTECHNOLOGY

Suggestions

Simulation of Directional Microphones in Digital Waveguide Mesh-Based Models of Room Acoustics
Hacıhabiboğlu, Hüseyin; Günel Kılıç, Banu (2010-02-01)
Digital waveguide mesh (DWM) models are time-domain numerical methods providing computationally simple solutions for wave propagation problems. They have been used in various acoustical modeling and audio synthesis applications including synthesis of musical instrument sounds and speech, and modeling of room acoustics. A successful model of room acoustics should be able to account for source and receiver directivity. Methods for the simulation of directional sources in DWM models were previously proposed. T...
Custom integrated circuit design for ultrasonic therapeutic CMUT array
Maadi, Mohammad; Bayram, Barış (Springer Science and Business Media LLC, 2015-04-01)
This paper presents the design of a highly flexible and programmable transmit beam-former ASIC using a high voltage (HV) 0.35 mu m CMOS technology to be flip-chip bonded to a 4 x 4 CMUT array for ultrasound therapeutic applications. However, proposed IC can be used as a transmitter circuitry in color Doppler 3D imaging applications. In our proposed chip, each CMUT element is provided by an 8-bit shift register, an 8-bit comparator, a one-shot circuit with adjustable pulse width, a programmable pulse train g...
Thin film (6,5) semiconducting single-walled carbon nanotube metamaterial absorber for photovoltaic applications
Obaidullah, Madina; Esat, Volkan; Sabah, Cumali (2017-12-01)
A wide-band (6,5) single-walled carbon nanotube metamaterial absorber design with near unity absorption in the visible and ultraviolet frequency regions for solar cell applications is proposed. The frequency response of the proposed design provides wide-band with a maximum of 99.2% absorption. The proposed design is also simulated with (5,4), (6,4), (7,5), (9,4), and (10,3) chiralities, and results are compared to show that the proposed design works best with (6,5) carbon nanotube (CNT) but also good for ot...
VSC BASED D-STATCOM WITH SELECTIVE HARMONIC ELIMINATION
Cetin, A.; Ermiş, Muammer (2007-09-27)
This paper describes the design, implementation and performance of a medium-size distribution type static synchronous compensator (D-STATCOM) with the simplest 2-level, 3-leg VSC topology. Reactive power control is achieved by phase-shift-angle control, and voltage source converter (VSC) harmonics arc eliminated by selective harmonic elimination method (SHEM) technique. VSC has been designed at the highest low-voltage level of 1 kV, and connected to medium-voltage (MV) bus through a low-pass input filter an...
Design and Analysis of Nanoantenna Arrays for Imaging and Sensing Applications at Optical Frequencies
Isiklar, Goktug; Cetin, Isa Can; Algun, Mustafa; Ergül, Özgür Salih (2019-01-01)
We present computational analysis of nanoantenna arrays for imaging and sensing applications at optical frequencies. Arrays of metallic nanoantennas are considered in an accurate simulation environment based on surface integral equations and the multilevel fast multipole algorithm developed for plasmonic structures. Near-zone responses of the designed arrays to nearby nanoparticles are investigated in detail to demonstrate the feasibility of detection. We show that both metallic and dielectric nanoparticles...
Citation Formats
H. Zhou et al., “Periodic Nanopillar N-I-P Amorphous Si Photovoltaic Cells Using Carbon Nanotube Scaffolds,” IEEE TRANSACTIONS ON NANOTECHNOLOGY, pp. 997–1004, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37173.