Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Optimum topological design of geometrically nonlinear single layer lamella domes using harmony search method
Download
index.pdf
Date
2008
Author
Çarbaş, Serdar
Metadata
Show full item record
Item Usage Stats
1
views
5
downloads
Harmony search method based optimum topology design algorithm is presented for single layer lamella domes. The harmony search method is a numerical optimization technique developed recently that imitates the musical performance process which takes place when a musician searches for a better state of harmony. Jazz improvisation seeks to find musically pleasing harmony similar to the optimum design process which seeks to find the optimum solution. The optimum design algorithm developed imposes the behavioral and performance constraints in accordance with LRFD-AISC. The optimum number of rings, the height of the crown and the tubular cross-sectional designations for dome members are treated as design variables. The member grouping is allowed so that the same section can be adopted for each group. The design algorithm developed has a routine that build the data for the geometry of the dome automatically that covers the numbering of joints, and member incidences, and the computation of the coordinates of joints. Due to the slenderness and the presence of imperfections in dome structures it is necessary to consider the geometric nonlinearity in the prediction of their response under the external loading. Design examples are considered to demonstrate the efficiency of the algorithm presented.
Subject Keywords
Engineering sciences.
,
Optimum Structural Design.
,
Harmony Search Algorithm.
URI
http://etd.lib.metu.edu.tr/upload/12609634/index.pdf
https://hdl.handle.net/11511/17825
Collections
Graduate School of Natural and Applied Sciences, Thesis