Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computational modeling of cardiac electrophysiology: A novel finite element approach
Date
2009-07-09
Author
Göktepe, Serdar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
199
views
0
downloads
Cite This
The key objective of this work is the design of an unconditionally stable, robust, efficient, modular, and easily expandable finite element-based simulation tool for cardiac electrophysiology. In contrast to existing formulations, we propose a global-local split of the system of equations in which the global variable is the fast action potential that is introduced as a nodal degree of freedom, whereas the local variable is the slow recovery variable introduced as an internal variable on the integration point level. Cell-specific excitation characteristics are thus strictly local and only affect the constitutive level. We illustrate the modular character of the model in terms of the FitzHugh-Nagumo model for oscillatory pacemaker cells and the Aliev-Panfilov model for non-oscillatory ventricular muscle cells. We apply an implicit Euler backward finite difference scheme for the temporal discretization and a finite element scheme for the spatial discretization. The resulting non-linear system of equations is solved with an incremental iterative Newton-Raphson solution procedure. Since this framework only introduces one single scalar-valued variable on the node level, it is extremely efficient, remarkably stable, and highly robust. The features of the general framework will be demonstrated by selected benchmark problems for cardiac physiology and a two-dimensional patient-specific cardiac excitation problem. Copyright (C) 2009 John Wiley & Sons, Ltd.
Subject Keywords
General Engineering
,
Applied Mathematics
,
Numerical Analysis
URI
https://hdl.handle.net/11511/40840
Journal
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
DOI
https://doi.org/10.1002/nme.2571
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Computational modeling of electrocardiograms: A finite element approach toward cardiac excitation
Kotikanyadanam, Mohan; Göktepe, Serdar; Kuhl, Ellen (Wiley, 2010-05-01)
The objective of this work is the computational simulation of a patient-specific electrocardiogram (EKG) using a novel, robust, efficient, and modular finite element-based simulation tool for cardiac electrophysiology. We apply a two-variable approach in terms of a fast action potential and a slow recovery variable, whereby the latter phenomenologically summarizes the concentration of ionic currents. The underlying algorithm is based on a staggered solution scheme in which the action potential is introduced...
A quasi-incompressible and quasi-inextensible element formulation for transversely isotropic materials
Dal, Hüsnü (Wiley, 2019-01-06)
The contribution presents a new finite element formulation for quasi-inextensible and quasi-incompressible finite hyperelastic behavior of transeversely isotropic materials and addresses its computational aspects. The material formulation is presented in purely Eulerian setting and based on the additive decomposition of the free energy function into isotropic and anisotropic parts, where the former is further decomposed into isochoric and volumetric parts. For the quasi-incompressible response, the Q1P0 ele...
Unstructured grid generation and a simple triangulation algorithm for arbitrary 2-D geometries using object oriented programming
Karamete, BK; Tokdemir, Turgut; Ger, M (Wiley, 1997-01-30)
This paper describes the logic of a dynamic algorithm for a general 2D Delaunay triangulation of arbitrarily prescribed interior and boundary nodes. The complexity of the geometry is completely arbitrary. The scheme is free of specific restrictions on the input of the geometrical data. The scheme generates triangles whose associated circumcircles contain 'no nodal points except their vertices. There is no predefined limit for the number of points and the boundaries. The direction of generation of the triang...
Multi objective conceptual design optimization of an agricultural aerial robot (AAR)
Özdemir, Segah; Tekinalp, Ozan; Department of Aerospace Engineering (2005)
Multiple Cooling Multi Objective Simulated Annealing algorithm has been combined with a conceptual design code written by the author to carry out a multi objective design optimization of an Agricultural Aerial Robot. Both the single and the multi objective optimization problems are solved. The performance figures of merits for different aircraft configurations are compared. In this thesis the potential of optimization as a powerful design tool to the aerospace problems is demonstrated.
An Explicitly Decoupled Variational Multiscale Method for Incompressible, Non-Isothermal Flows
Belenli, Mine A.; Kaya Merdan, Songül; Rebholz, Leo G. (Walter de Gruyter GmbH, 2015-01-01)
We propose, analyze and test a fully decoupled, but still unconditionally stable and optimally accurate, variational multiscale stabilization (VMS) for incompressible, non-isothermal fluid flows. The VMS stabilization is implemented as a post-processing step, and thus can be used with existing codes. A full numerical analysis of the method is given that proves unconditional stability with respect to the timestep size, and that the method converges optimally in both time and space. Numerical tests are provid...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Göktepe, “Computational modeling of cardiac electrophysiology: A novel finite element approach,”
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
, pp. 156–178, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40840.