Ferromagnetic Target Detection and Localization with a Wireless Sensor Network

2010-11-03
Antepli, Mehmet Akif
Gurbuz, Sevgi Zubeyde
Uysal, Elif
This work attempts to address challenges of using magnetic sensors for target detection, localization and tracking with a wireless sensor network (WSN). A WSN comprised of magnetic sensors was constructed to investigate the modeling, detection, and localization of ferrous targets. The system was established as a centralized tree-based wireless network with a PC acting as the fusion center. A heavy cylindrical iron bar was used as a test target and modeled as a magnetic dipole. The magnetic signal models used are experimentally validated and the problem of variation in magnetic sensor sensitivity is addressed by including sensitivity estimates in the validation process. Maximum likelihood and least-squares techniques were applied to detect and localize the test target. Experimental results demonstrating performance are presented and practical considerations of utilizing magnetic sensors in a WSN addressed.

Suggestions

Identification and localization on a wireless magnetic sensor network
Baghaee, Sajjad; Uysal Bıyıkoğlu, Elif; Gürbüz, Sevgi Zübeyde; Department of Electrical and Electronics Engineering (2012)
This study focused on using magnetic sensors for localization and identification of targets with a wireless sensor network (WSN). A wireless sensor network with MICAz motes was set up utilizing a centralized tree-based system. The MTS310, which is equipped with a 2-axis magnetic sensor was used as the sensor board on MICAz motes. The use of magnetic sensors in wireless sensor networks is a topic that has gained limited attention in comparison to that of other sensors. Research has generally focused on the d...
Exploiting energy-aware spatial correlation in wireless sensor networks
Shah, Ghalib A.; Bozyigit, Muslim (2007-01-12)
Wireless sensor networks (WSNs) promise fine-grain monitoring in a wide variety of applications, which require dense sensor nodes deployment. Due to high density of nodes, spatially redundant or correlated data is generated. Redundancy increases the reliability level of information delivery but increases the energy consumption of the nodes too. Since energy conservation is a key issue for WSNs, therefore, spatial correlation can be exploited to deactivate some of the nodes generating redundant information. ...
Cooperative Localization In One-Hop And Multi-Hop Wireless Sensor Networks Using Alternating Minimization Algorithm
Erdemir, Ece Naz; Tuncer, Temel Engin (2016-05-19)
In this work, a new approach is proposed to solve cooperative localization problems in wireless sensor networks for both one-hop and multi-hop cases. To find the unknown positions of randomly distributed sensors with limited power and communication ability, noisy inter-sensor distances and anchor node positions are used. In a plane, when the distances between a sensor and at least three neighbor anchors are known, it is possible to find the sensor position by solving a linear set of equations. However, for ...
Application and Modeling of a Magnetic WSN for Target Localization
Baghaee, Sajjad; GÜRBÜZ, SEVGİ ZÜBEYDE; Uysal, Elif (2013-04-12)
The aim of this study is modeling ferromagnetic targets for localization and identification of such objects by a wireless sensor network (WSN). MICAz motes were used for setting up a wireless sensor network utilizing a centralized tree-based system. The detection and tracking of ferromagnetic objects is an important application of WSNs. This research focuses on analyzing the sensing limitations of magnetic sensors via tests conducted on small-scale targets which are moving within a 30 cm radius around the s...
Mobile traffic modelling for wireless multimedia sensor networks in IoT
Al-Turjman, Fadi; Radwan, Ayman; Mumtaz, Shahid; Rodriguez, Jonathan (2017-11-01)
Wireless sensor networks suffer from some limitations such as energy constraints and the cooperative demands essential to perform multi-hop geographic routing for real-time applications. Quality of Service (QoS) depends to a great extent on offering participating nodes an incentive for collaborating. In this paper, we present a novel traffic model for a new-generation of sensor networks that supports a wide range of communication-intensive real-time multimedia applications. The model is used to investigate ...
Citation Formats
M. A. Antepli, S. Z. Gurbuz, and E. Uysal, “Ferromagnetic Target Detection and Localization with a Wireless Sensor Network,” 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37390.