Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural finite element analysis of stiffened and honeycomb panels of the RASAT satellite
Date
2007-06-16
Author
Ontac, S.
Dağ, Serkan
Goekler, M. I.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
153
views
0
downloads
Cite This
This paper describes the structural analysis carried out on the main stiffened and honeycomb panels of the RASAT satellite. The analysis here supports the design process and aims to ensure that the panels survive structural qualification testing. This analysis therefore forms part of the overall qualification process. The stiffened and honeycomb panels being considered in this document form the outer box structure of the satellite. These panels consist of the space-facing facet (SFF), solar panels including solar cells and earth facing facet (EFF). All these panels are key parts of the satellite's structure and are critical to mission safety. The separation panel is particularly highly loaded, since it supports the battery pack, reaction wheels, gyro module, magnetorquer rods and sun sensors. The separation panel also supports the solar panel assembly. The solar panels are also of critical importance, their integrity maintaining the required power supply to operate the satellite's electronic systems. As being different from the SFF and EFF, the solar panels are made of aluminum honeycomb panels. The solar panels are particularly sensitive, as they carry arrays of delicate ceramic solar cells together with their wiring. Throughout all loading conditions experienced during the mission, the solar panels must continue to support the solar cells without cell failures or wiring disconnections. The EFF is perhaps the least critical of the stiffened panels but still must support the top of the solar panel assembly and must carry various antennae. The main objective of this study is to assess the strength and vibration response properties of the stiffened and honeycomb panels by conducting static stress and modal analyses. For the case of static loading, the reliability can be estimated with great efficiency, whereas for dynamic loading the performance depends on the considered frequency range. The obtained results are very significant in that, they illustrate the feasibility of a full scale analysis for structural reliability in a design context for large-scale structures. The analyses are conducted by means of the finite element method. For the static case, the SFF and EFF are meshed with hex elements and the honeycomb panels are meshed with solid brick and shell elements. For the calculated gRMS value the static analysis had been conducted in each axis of the panel assembly. For the dynamic case, the same finite element mesh and material properties had been used. In this case, the boundary conditions are applied in such a way to determine the mode shapes and the resonance frequencies. Furthermore, the stress values had been determined with respect to the applied static and dynamic loading cases. They had been compared With the allowable stress values of the materials. In this paper the complete finite element analyses procedures are described and the results of the analyses are presented. According to the computed results, some conclusions are drawn in order to guide experimental qualification tests.
Subject Keywords
Finite element methods
,
Assembly
,
Satellites
,
Qualifications
,
Photovoltaic cells
,
Stress
,
Testing
,
Wiring
,
Frequency estimation
,
Process design
URI
https://hdl.handle.net/11511/37523
DOI
https://doi.org/10.1109/rast.2007.4283971
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Numerical simulation of dynamic shear wall tests: A benchmark study
Kazaz, I; Yakut, Ahmet; Gulkan, P (2006-03-01)
This article presents the numerical simulation of a 1/3-scale, 5-story reinforced concrete load bearing structural wall model subjected to seismic excitations in the context of IAEA benchmark shaking table experiment conducted in laboratories of CEA in Saclay, France. A series of non-linear time history analyses were performed to simulate the damage experienced and response quantities measured for the specimen tested on a shaking table. The mock-up was subjected to a series of artificial and natural earthqu...
Design, Modelling and Analysis of Morphing Airfoils
Köksal, Buğra; Şahin, Melin; Uzol, Oğuz; Department of Aerospace Engineering (2023-1)
This study presents the design, finite element (FE) modeling and analysis of a morphing airfoil using pressure-actuated cell structures. It is aimed that the selected baseline airfoil should be capable of changing its profile to morph into a target airfoil profile. To achieve this goal, first, a NACA 0012 airfoil with a 500 mm chord and 8 mm x 8 mm outer cross-section is obtained in Altair® HyperWorks environment as a baseline airfoil. Following this, the cell actuators responsible for morphing are designed...
Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting
Sokollu, Baris; Gulcan, Orhan; Konukseven, Erhan İlhan (2022-12-01)
The aim of this study is to make a comparative assessment of the compression and tensile behavior of two strut -based (body-centered cubic, BCC, and face-centered cubic, FCC) and three triply periodic minimum surfaces (gyroid, primitive, diamond) lattice structures produced by electron beam melting method from Ti6Al4V powder material. Compression and tension tests were performed and compared with finite element analysis results. Moreover, scanning electron microscope analysis for dimensional variation and o...
Structural optimization of composite and aluminum horizontal tail plane of a helicopter
Arpacıoğlu, Bertan; Kayran, Altan; Department of Aerospace Engineering (2019)
This thesis presents structural optimization studies of aluminum and composite material horizontal tail plane structure of a helicopter by using MSC.NASTRAN optimization capabilities. Structural design process starts from conceptual design phase, and structural layout design is performed by using CATIA. In the preliminary design phase, study focuses on minimum weight optimization with multiple design variables and similar constraints for both materials. Aerodynamic load calculation is performed using ANSYS ...
Structural material selection and processing for low earth orbit spacecraft regarding atomic oxygen effects
Avcu, S; Celik, B (2003-11-22)
In this paper structural material selection and surface processing considerations problem for low earth orbit (LEO) spacecraft is discussed. In order to limit this broad subject, discussion is focused especially on "Atomic Oxygen Effect", that is crucial for structures. Atomic Oxygen (AO) constitutes the most severe impact on material degradation and erosion. However other environmental effects like, space debris, outgassing, solar and cosmic radiation cannot be ignored. Two types of materials used for sate...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ontac, S. Dağ, and M. I. Goekler, “Structural finite element analysis of stiffened and honeycomb panels of the RASAT satellite,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37523.