Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Convective heat transfer enhancement with nanofluids: The effect of temperature-variable thermal conductivity
Date
2010-07-14
Author
Özerinç, Sezer
Kakaç, Sadik
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
0
downloads
Cite This
A nanofluid is defined as the suspension of nanoparticles in a base liquid. Studies in the last decade have shown that significant amount of thermal conductivity and heat transfer enhancement can be obtained by using nanofluids. In the first part of this study, classical forced convection heat transfer correlations developed for pure fluids are used to predict the experimental values of heat transfer enhancement of nanofluids. It is seen that the experimental values of heat transfer enhancement exceed the enhancement predictions of the classical correlations. On the other hand, a recent correlation based on the thermal dispersion phenomenon created by the random motion of nanoparticles predicts the experimental data well. In the second part of the study, in order to further examine the validity of the thermal dispersion approach, a numerical analysis of forced convection heat transfer of Al2O3/water nanofluid inside a circular tube in the laminar flow regime is performed by utilizing single phase assumption. A thermal dispersion model is applied to the problem and variation of thermal conductivity with temperature and variation of thermal dispersion with local axial velocity are taken into account. The agreement of the numerical results with experimental data might be considered as an indication of the validity of the approach.
Subject Keywords
Nanofluids
,
Thermal dispersion
,
Numerical study
,
Forced convection
,
heat transfer enhancement
URI
https://hdl.handle.net/11511/37593
DOI
https://doi.org/10.1115/esda2010-25235
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion
Özerinç, Sezer; Kakac, S. (2012-12-01)
Nanofluids are promising heat transfer fluids due to their high thermal conductivity. In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experi...
Heat transfer enhancement with nanofluids
Özerinç, Sezer; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2010)
A nanofluid is the suspension of nanoparticles in a base fluid. Nanofluids are promising for heat transfer enhancement due to their high thermal conductivity. Presently, discrepancy exists in nanofluid thermal conductivity data in the literature, and enhancement mechanisms have not been fully understood yet. In the first part of this study, a literature review of nanofluid thermal conductivity is performed. Experimental studies are discussed through the effects of some parameters such as particle volume fra...
HEAT TRANSFER ENHANCEMENT IN LAMINAR CONVECTIVE HEAT TRANSFER WITH NANOFLUIDS
Özerinç, Sezer; YAZICIOGLU, A. G. (2011-06-03)
In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experimental data available in the literature, and it is shown that this approach underestim...
THERMOPHYSICAL PROPERTIES OF TWO-PHASE REFRIGERANT BASED NANOFLUIDS IN A REFRIGERATION CYCLE
Tekin, Bilgehan; Yazicioglu, Almila G. (2016-07-14)
Nanofluids are a class of fluids with nanoparticles suspended in a base fluid. The aim for using nanofluids is often to improve the thermophysical properties of the base fluid so as to enhance the energy transfer efficiency. As the technology develops; the size of devices and systems needs to get smaller to fulfill the engineering requirements and/or to be leading among competitors. The use of nanofluids in heat transfer applications seems to be a viable solution to current heat transfer problems, albeit wi...
Enhanced thermal conductivity of nanofluids: a state-of-the-art review
Özerinç, Sezer; Yazicioglu, Almila Guevenc (2010-02-01)
Adding small particles into a fluid in cooling and heating processes is one of the methods to increase the rate of heat transfer by convection between the fluid and the surface. In the past decade, a new class Of fluids called nanofluids, in which particles of size 1-100 nm with high thermal conductivity are Suspended in a conventional heat transfer base fluid, have been developed. It has been shown that nanofluids containing a small amount of metallic or nonmetallic particles, Such as Al2O3, CuO, Cu, SiO2,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Özerinç and S. Kakaç, “Convective heat transfer enhancement with nanofluids: The effect of temperature-variable thermal conductivity,” 2010, vol. 2, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37593.