Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
THERMOPHYSICAL PROPERTIES OF TWO-PHASE REFRIGERANT BASED NANOFLUIDS IN A REFRIGERATION CYCLE
Date
2016-07-14
Author
Tekin, Bilgehan
Yazicioglu, Almila G.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
171
views
0
downloads
Cite This
Nanofluids are a class of fluids with nanoparticles suspended in a base fluid. The aim for using nanofluids is often to improve the thermophysical properties of the base fluid so as to enhance the energy transfer efficiency. As the technology develops; the size of devices and systems needs to get smaller to fulfill the engineering requirements and/or to be leading among competitors. The use of nanofluids in heat transfer applications seems to be a viable solution to current heat transfer problems, albeit with certain limitations. As an enhancing factor for the thermal conductivity of the base fluid, nanofluids are considered to be use in cooling system applications. For these applications, the base fluid, the refrigerant, exists as a two-phase liquid-vapor mixture in parts of the refrigeration cycle. To analyze, design and optimize the cycle in such applications, the thermophysical properties of the refrigerant based nanofluids for two-phase flow of refrigerant are needed. There are different models present in the literature derived for the thermophysical properties of nanofluids. However, a majority of the existing models for nanofluid thermophysical properties have been proposed for water- and other liquids-based nanofluids, through theoretical, numerical and experimental research. Therefore, the existing models for determination of the nanofluid thermophysical properties are not applicable for refrigerant based nanofluid applications when the results are compared. Thus, in this work, a new model is derived for the thermal conductivity and viscosity of refrigerant based nanofluids, using existing data from both heat transfer and thermophysical property measurement experiments. The effect of the nanoparticles on heat transfer in two phase flow of the refrigerant is considered by applying the two phase heat transfer correlations in the literature to experimental data. As a result, the thermophysical properties of the known states are determined through known heat transfer performance. Even though the model is developed from the analysis of flow in an evaporator and flow in a single tube with evaporating refrigerant, it is aimed to cover the flows in both evaporator and condenser sections in a vapor compression refrigeration cycle to provide the necessary models for thermophysical properties in heat transfer devices which will allow the design of both cycle and evaporator or condenser in terms of sizing and rating problems by performing heat transfer analysis and/or optimization. The model can also be improved by considering the effects of slip mechanisms that lead to slip velocity between the nanoparticle and base fluid.
Subject Keywords
boiling heat-transfer
,
Suspension
,
Performance
,
Fundamentals
,
Nanorefrigerant
,
Viscosity
,
Temperature
,
Brownian-motion
,
Particle concentration
,
Enhanced thermal-conductivity
URI
https://hdl.handle.net/11511/64442
Conference Name
ASME Summer Heat Transfer Conference
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Effect of Nanoconvection due to Brownian Motion on Thermal Conductivity of Nanofluids
Azizian, M. Reza; AYBAR, HİKMET ŞELLİ; Okutucu Özyurt, Hanife Tuba (2009-08-22)
A nanofluid is a new class of heat transfer fluids that contain a base fluid and nanoparticles. The use of additives is a technique applied to enhance the heat transfer performance of base fluids. The thermal conductivity of the ordinary heat transfer fluids is not adequate to meet today's cooling rate requirements. Nanofluids have been shown to increase the thermal conductivity and convective heat transfer performance of the base liquids. One of the possible mechanisms for anomalous increase in the thermal...
Convective heat transfer enhancement with nanofluids: The effect of temperature-variable thermal conductivity
Özerinç, Sezer; Kakaç, Sadik (2010-07-14)
A nanofluid is defined as the suspension of nanoparticles in a base liquid. Studies in the last decade have shown that significant amount of thermal conductivity and heat transfer enhancement can be obtained by using nanofluids. In the first part of this study, classical forced convection heat transfer correlations developed for pure fluids are used to predict the experimental values of heat transfer enhancement of nanofluids. It is seen that the experimental values of heat transfer enhancement exceed the e...
Thermoluminescence properties of Al doped ZnO nanoparticles
IŞIK, MEHMET; Hasanlı, Nızamı (Elsevier BV, 2018-08-15)
ZnO nanoparticles doped with aluminum (AZO nanoparticles) were investigated using low temperature thermoluminescence (TL) and structural characterization experiments. TL experiments were performed on AZO nanoparticles in the temperature range of 10-300 K. TL curve presented one intensive peak around 123 K and two overlapped peaks to intensive peak around 85 and 150 K for heating rate of 0.1 K/s. Curve fitting and initial rise methods were used to find the activation energies of associated trapping centers. ...
Heat transfer enhancement with nanofluids
Özerinç, Sezer; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2010)
A nanofluid is the suspension of nanoparticles in a base fluid. Nanofluids are promising for heat transfer enhancement due to their high thermal conductivity. Presently, discrepancy exists in nanofluid thermal conductivity data in the literature, and enhancement mechanisms have not been fully understood yet. In the first part of this study, a literature review of nanofluid thermal conductivity is performed. Experimental studies are discussed through the effects of some parameters such as particle volume fra...
Thermoluminescence characterization of (Ga2Se3)(0.25) - (Ga2S3)(0.75) single crystal compounds
Isik, M.; Guler, I; Hasanlı, Nızamı (Elsevier BV, 2020-03-15)
Ga2Se3 and Ga2S3 compounds take attention due to their potential applications in photovoltaics. Defects and impurities may affect the quality of optoelectronic devices. Therefore, it is worthwhile to determine the parameters (activation energy, order of kinetics, frequency factor) of traps associated with the defects and/or impurities. The aim of the present paper is to investigate the trapping parameters of (Ga2Se3)(0.25) - (Ga2S3)(0.75) single crystal which is one of the member of (Ga2Se3)(x) - (Ga2S3)(1-...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Tekin and A. G. Yazicioglu, “THERMOPHYSICAL PROPERTIES OF TWO-PHASE REFRIGERANT BASED NANOFLUIDS IN A REFRIGERATION CYCLE,” Washington, DC, 2016, p. 0, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64442.