Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
CONVECTIVE HEAT TRANSFER IN MICROSCALE SLIP FLOW
Date
2009-09-04
Author
Güvenç Yazıcıoğlu, Almıla
KAKAÇ, SADIK
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
In this lecture, steady-state convective heat transfer in different microchannels (microtube and parallel plates) will be presented in the slip flow regime. Laminar, thermally and/or hydrodynamically developing flows will be considered. In the analyses, in addition to rarefaction, axial conduction, and viscous dissipation effects, which are generally neglected in macroscale problems, surface roughness effects, and temperature-variable thermophysical properties of the fluid will also be taken into consideration. Navier-Stokes and energy equations will be solved and the variation of Nusselt number, the dimensionless parameter for convection heat transfer, along the channels will be presented in tabular and graphical forms as a function of Knudsen, Peclet, and Brinkman numbers, which represent the effects of rarefaction, axial conduction, and viscous dissipation, respectively. The results will be compared and verified with available experimentalanalytical, and numerical solutions in literature.
Subject Keywords
Fluid-flow
,
Laminar-flow
,
Wall roughness
,
Axial conduction
,
Surface-roughness
,
Numerical-simulation
,
Liquid flow
,
Pressure-drop
,
Graetz problem
,
Viscous dissipation
URI
https://hdl.handle.net/11511/37657
DOI
https://doi.org/10.1007/978-90-481-9029-4_2
Collections
Department of Mechanical Engineering, Conference / Seminar