The effect of axial conduction on heat transfer in a liquid microchannel flow

Download
2011-05-01
Cole, Kevin D.
Cetin, Barbaros
Analysis is presented for conjugate heat transfer in a parallel-plate microchannel. Axial conduction in the fluid and in the adjacent wall are included. The fluid is a constant property liquid with a fully-developed velocity distribution. The microchannel is heated by a uniform heat flux applied to the outside of the channel wall. The analytic solution is given in the form of integrals by the method of Green's functions. Quadrature is used to obtain numerical results for the local and average Nusselt number for various flow velocities, heating lengths, wall thicknesses, and wall conductivities. These results have application in the optimal design of small-scale heat transfer devices in areas such as biomedical devices, electronic cooling, and advanced fuel cells.
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

Suggestions

Analysis of Transient Laminar Forced Convection of Nanofluids in Circular Channels
Sert, İsmail Ozan; Sezer Uzol, Nilay; Güvenç Yazıcıoğlu, Almıla; Kakaç, Sadık (2012-11-15)
In this study, forced convection heat transfer Characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydrodynamically fully developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analys...
A numerical study of single-phase convective heat transfer in microtubes for slip flow
Sun, Wei; Kakac, Sadik; Yazicioglu, Almila G. (2007-11-01)
The steady-state convective heat transfer for laminar, two-dimensional, incompressible rarefied gas flow in the thermal entrance region of a tube under constant wall temperature, constant wall heat flux, and linear variation of wall temperature boundary conditions are investigated by the finite-volume finite difference scheme with slip flow and temperature jump conditions. Viscous heating is also included, and the solutions are compared with theoretical results where viscous heating has been neglected. For ...
Evaluation of nusselt number for a flow in a microtube with constant heat flux including axial conduction, viscous dissipation and second-order slip model
Çetin, Barbaros; Bayer, Özgür (2010-09-28)
In this paper, the fully-developed temperature profile and corresponding Nusselt value is determined analytically for a gaseous flow in a microtube with a thermal boundary condition of constant wall heat flux. The flow assumed to be laminar, and hydrodynamically and thermally fully developed. The fluid is assumed to be constant property and incompressible. The effect of rarefaction, viscous dissipation and axial conduction, which are important at the microscale, are i...
The influence of polymerization temperature on structure and properties of polyaniline
Yilmaz, Faris; Kucukyavuz, Zuhal (2009-01-31)
The influence of polymerization temperature (from -25 to +25 degrees C) on molecular weight, crystallinity, electrical conductivity, thermal and morphological properties of polyaniline has been investigated. Aniline was oxidized in an aqueous medium with ammonium persulfate and 1.0 M hydrochloric acid. The reaction mixture freezes below -10 degrees C and hence lithium chloride was used in sufficient amount to prevent freezing. As the reaction temperature decreases, both the molecular weight of polyaniline a...
The application of BEM to MHD flow and heat transfer in a rectangular duct with temperature dependent viscosity
Ebren Kaya, Elif; Tezer, Münevver ( EC LTD.; 2018-07-11)
The steady, laminar, fully developed MHD flow of an incompressible, electrically conducting fluid with temperature dependent viscosity is studied in a rectangular duct together with its heat transfer. Although the induced magnetic field is neglected due to the small Reynolds number, the Hall effect, viscous and Joule dissipations are taken into consideration. The momentum equation for the pipe-axis velocity and the energy equation are solved iteratively. Firstly, the momentum equation is solved by using the...
Citation Formats
K. D. Cole and B. Cetin, “The effect of axial conduction on heat transfer in a liquid microchannel flow,” INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, pp. 2542–2549, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65379.