Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Tunable near-field radiative transfer by III-V group compound semiconductors
Date
2019-03-06
Author
Elcioglu, Elif Begum
Didari, Azadeh
Okutucu Özyurt, Hanife Tuba
MENGÜÇ, MUSTAFA PINAR
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
Near-field radiative transfer (NFRT) refers to the energy transfer mechanism which takes place between media separated by distances comparable to or much smaller than the dominant wavelength of emission. NFRT is due to the contribution of evanescent waves and coherent nature of the energy transfer within nano-gaps, and can exceed Planck's blackbody limit. As researchers further investigate this phenomenon and start fabrication of custom-made platforms, advances in utilization of NFRT in energy harvesting applications move forward day by day. In designing and manufacturing such harvesting devices, chemical and physical properties of surfaces and wafers are important for development of effective solutions. In this work, we compare several III-V group compound semiconductor wafers (mainly GaAs, InSb, and InP) from fabrication point of view, in order to explore their possible use in future devices. The results presented here show that the type of dopant, wafer temperature, and gap size are very important factors as they affect the NFRT rates. GaAs, InSb, and InP wafers significantly enhance the near-field fluxes beyond the blackbody rates, and n-type InSb yields to the highest enhancement. For GaAs, p-type yielded a higher radiative flux compared to n-type GaAs, as oppose to n-type InSb outperforming its p-type and undoped counterparts. Furthermore, the possible use of n-InSb as the TPV cell at 550K is discussed for effective energy harvesting. These findings can be useful for determination of the proper material type for emitting and non-emitting NFRT-based energy harvesting devices.
Subject Keywords
Acoustics and Ultrasonics
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/51307
Journal
JOURNAL OF PHYSICS D-APPLIED PHYSICS
DOI
https://doi.org/10.1088/1361-6463/aaf947
Collections
Department of Mechanical Engineering, Article