Analysis Window Length Selection For Linear Signal Models

2015-05-19
Yazar, Alper
Candan, Çağatay
A method is presented for the selection of analysis window length, or the number of input samples, for linear signal modeling without compromising the model assumptions. It is assumed that the signal of interest lies in a known linear space and noisy samples of the signal is provided. The goal is to use as many signal samples as possible to mitigate the effect of noise without violating the assumptions on the model. An application example is provided to illustrate the suggested method.
23nd Signal Processing and Communications Applications Conference (SIU)

Suggestions

Parameter estimation in generalized partial linear models with Tikhanov regularization
Kayhan, Belgin; Karasözen, Bülent; Department of Scientific Computing (2010)
Regression analysis refers to techniques for modeling and analyzing several variables in statistical learning. There are various types of regression models. In our study, we analyzed Generalized Partial Linear Models (GPLMs), which decomposes input variables into two sets, and additively combines classical linear models with nonlinear model part. By separating linear models from nonlinear ones, an inverse problem method Tikhonov regularization was applied for the nonlinear submodels separately, within the e...
Application of F-test method on model order selection and related problems
Yazar, Alper; Candan, Çağatay; Department of Electrical and Electronics Engineering (2015)
Signal modeling is one of the important topics of signal processing area. The input signal should be modeled with a suitable mathematical model first. In statistics related disciplines, there are information theory based criteria for model order selection topic. In this thesis work, F-test based methods are proposed on model order selection and related problems. F-test is used in statistics related disciplines. However, it is not so widely used in signal processing related problems. Solution approaches for ...
Dimension reduced robust beamforming for towed arrays
Topçu, Emre; Candan, Çağatay; Department of Electrical and Electronics Engineering (2015)
Adaptive beamforming methods are used to obtain higher signal to interference plus noise ratio at the array output. However, these methods are very sensitive to steering vector and covariance matrix estimation errors. To overcome this issue, robust methods are usually employed. On the other hand, implementation of these robust methods can be computationally expensive for arrays with large number of sensors. Reduced dimension techniques aim to lower the computational load of adaptive beamforming algorithms w...
On the Cramér-Rao lower bound under model mismatch
Fritsche, Carsten; Orguner, Umut; Özkan, Emre; Gustafsson, Fredrik (2014-04-24)
Cram´er-Rao lower bounds (CRLBs) are proposed for deterministic parameter estimation under model mismatch conditions where the assumed data model used in the design of the estimators differs from the true data model. The proposed CRLBs are defined for the family of estimators that may have a specified bias (gradient) with respect to the assumed model. The resulting CRLBs are calculated for a linear Gaussian measurement model and compared to the performance of the maximum likelihood estimator for the corresp...
Algorithm Overview and Design for Mixed Effects Models
Koca, Burcu; Gökalp Yavuz, Fulya (2021-06-06)
Linear Mixed Model (LMM) is an extended regression method that is used for longitudinal data which has repeated measures within the individual. It is natural to expect high correlation between these repeats over a period of time for the same individual. Since classical approaches may fail to cover these correlations, LMM handles this significant concern by introducing random effect terms in the model. Besides its flexible structure in terms of modeling, LMM has several application areas such as clinical tri...
Citation Formats
A. Yazar and Ç. Candan, “Analysis Window Length Selection For Linear Signal Models,” presented at the 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55016.