Mechanical Properties Identification of Viscoelastic/Hyperelastic Materials Using Haptic Device Based Experimental Setup

2011-01-01
Tabakci, Alican
Konukseven, Erhan İlhan
Mechanical behavior simulation of viscoelastic materials is a difficult task. In order to obtain accurate simulations, material model should be well chosen and hyperelastic characteristics of the viscoelastic materials should also be incorporated in the model. Once the material model is selected the coefficients can be identified with the help of mechanical tests/experiments. The main goal of this study is to optimize material model's coefficients by using the designed indenter test setup results and inverse finite element modeling. Indenter test setup was designed by using a haptic device, force sensor and data acquisition card to test the mechanical properties of the viscoelastic/hyperelastic materials. Inverse finite element modeling method is used in order to model the materials according to their material characteristics. The model obtained from the analysis was optimized by using the data obtained from indenter tests. The conformity of the chosen model and the tested materials is shown by inverse finite element modeling and the material model coefficients are proved to be identified correctly.
ADVANCED DESIGN AND MANUFACTURE IV

Suggestions

Mechanical properties identification of viscoelastic / hyperelastic materials based on experimental data
Tabakcı, Alican; Konukseven, Erhan İlhan; Erkmen, Aydan Müşerref; Department of Mechanical Engineering (2010)
Mechanical simulation of viscoelastic materials and assigning a viscoelastic material to the modeled parts in the simulations are difficult task. For the simulations, material model should be well chosen and material coefficients of the chosen models should be known. In order to obtain accurate simulations, hyperelastic characteristics of the viscoelastic materials should be investigated and hyperelastic model should be incorporated in the solutions. Material models and material model’s coefficients are cho...
Fracture analysis of welded connections
Yetgin, Ali; Kadıoğlu, Fevzi Suat; Department of Mechanical Engineering (2013)
The main objective of this thesis is to evaluate structural integrity of a multi barrel launcher system on fracture mechanics basis by using finite element method. A global finite element model that includes necessary kinematic and elastic connections is built. Dynamic firing forces are applied on global finite element model and general structural response is obtained. Sub modeling method is used in order to perform crack analysis. Since size of global model is too large to include solid crack elements whic...
Elastic analysis of orthotropic cylinders under different boundary conditions
Farukoğlu, Ömer Can; Eraslan, Ahmet Nedim; Department of Engineering Sciences (2016)
Analytical solutions are derived to examine the elastic responses of fixed end cylinders made of orthotropic materials. Cylinders are investigated under different boundary conditions which are internal pressure, external pressure, combined pressure and annular rotation respectively. Making use of Maxwell relations, orthotropic cylinders are transformed to isotropic ones. In order to exhibit numerical examples different orthotropic materials are used and compared. It is observed that orthotrophy slightly inf...
Fracture mechanical behaviour of visco elastic materials
NAESER, Bastian; Dal, Hüsnü; Kaliske, Michael (2007-03-30)
The material force approach is an efficient, elegant, and accepted means to compute the J‐integral as a fracture mechanical parameter for elastic and inelastic materials. With the formulation of a multiplicative split of the deformation gradient at hand, rate‐dependent (visco‐elastic) materials described for example by the physically based Bergström‐Boyce model can be investigated. For these investigations, the so‐called material volume forces have to be computed in order to separate the driving forces acti...
Theoretical prediction of bulk glass forming ability (BGFA) of Ti-Cu based multicomponent alloys
SUER, Sila; Mehrabov, Amdulla; Akdeniz, Mahmut Vedat (Elsevier BV, 2009-03-01)
The bulk glass forming ability (BGFA) of Ti-Cu based multicomponent alloys has been evaluated via theoretical modeling and computer simulation studies based on a combination of electronic theory of alloys in the pseudopotential approximation and the statistical thermodynamical theory of liquid alloys The. magnitude of atomic ordering energies, calculated by means of the electronic theory of alloys in the pseudopotential approximation, was subsequently used for calculation of the key thermodynamic parameters...
Citation Formats
A. Tabakci and E. İ. Konukseven, “Mechanical Properties Identification of Viscoelastic/Hyperelastic Materials Using Haptic Device Based Experimental Setup,” ADVANCED DESIGN AND MANUFACTURE IV, pp. 115–118, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38147.