Development and Modeling of a Wafer-Level BCB Packaging Method for Capacitive RF MEMS Switches

2019-08-01
Comart, Ilker
Cetintepe, Cagri
Sagiroglu, Ebru
Demir, Şimşek
Akın, Tayfun
This paper presents a novel wafer-level packaging method for shunt, capacitive RF MEMS switches using BCB as the adhesive interlayer. Fabrication and electrical characteristics of the proposed package were initially evaluated for 50 Omega CPW lines. Microwave measurements of these packaged test structures were fitted to a circuit model, which was later employed to optimize the package for RF MEMS switches. The proposed packaging method was next successfully integrated with an in-house RF MEMS fabrication process. Mechanical and microwave characteristics of these switches were investigated prior to and following the packaging process. Measured shear strength for five packaged switches averages to 18.3 MPa. MEMS bridges deflect by 71 nm on the average due to the packaging step. C-V measurements show 4.2 V average increase in pull-in voltages. Millimeter-wave measurements confirm the negligible effect of package on switch performance. Measured upstate return and insertion losses at 35 GHz read 28 and 0.4 dB, respectively. The downstate isolation attains 35 dB at 35 GHz for most of the packaged switches. Lifetime measurements of a packaged switch demonstrate 10.2 billion cycles without failure.
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS

Suggestions

Packaging of RF MEMS switches and performance improvement
Comart, İlker; Demir, Şimşek; Department of Electrical and Electronics Engineering (2019)
This dissertation presents a novel zero-level packaging method for shunt, capacitive contact RF MEMS switches where BCB acts as the adhesive interlayer between the cap and device wafers. Initially, the packaging concept is realized for 50 Ω CPW transmission lines. A microwave characterization procedure (circuit modeling) is performed by curve fitting five packaged CPW transmission line performances to the proposed circuit model. The circuit model consists of cascaded transmission line segments, in which lumpe...
An all-silicon process platfom for wafer-level vacuum packaged MEMS devices
Torunbalci, Mustafa Mert; Gavcar, Hasan Dogan; Yesil, Ferhat; Alper, Said Emre; Akın, Tayfun (2021-01-01)
This paper introduces a novel, inherently simple, and all-silicon wafer-level fabrication and hermetic packaging method developed for MEMS devices. The proposed method uses two separate SOI wafers to form highly-doped through-silicon vias (TSVs) and suspended MEMS structures, respectively. These SOI wafers are then bonded by Au-Si eutectic bonding at 400°C, achieving hermetic sealing and signal transfer without requiring any complex via or trench refill process steps. The package vacuum is measured u...
Analysis and Elimination of the Capacitive Feedthrough Current on Electrostatically Actuated and Sensed Resonance-Based MEMS Sensors
Kangul, Mustafa; Aydin, Eren; Gokce, Furkan; Zorlu, Ozge; Külah, Haluk (2017-12-01)
This paper presents the investigation of two different capacitive feedthrough current elimination methods with an analysis of the effect of the capacitive feedthrough current on the resonance characteristics of electrostatically actuated and sensed resonant MEMS sensors. Electrostatically actuated and sensed resonators have various applications, such as accelerometers, gyroscopes, mass sensors, and temperature sensors. In most of these applications, as sensitivity increases, gain decreases. The capacitive f...
Development of wafer-level vacuum packaging for MEMS devices with transient liquid phase (TLP) bonding: a combinatorial approach
Yurdakul, Özgün; Kalay, Yunus Eren; Department of Metallurgical and Materials Engineering (2023-1-25)
Electronic systems may be sealed by slicing the wafer into individual circuits and then packaging them or by packaging an integrated circuit while still part of the wafer. The latter enables the packaging of all detectors on complementary metal oxide semiconductors (CMOS) simultaneously, considerably decreasing manufacturing costs and increasing efficiency. Regarding a suitable packaging process for microbolometers, the most crucial parameter appears to be the compatibility of the packaging procedure with t...
Comparison of Two Alternative Fabrication Processes for a Three-Axis Capacitive MEMS Accelerometer
Tez, S.; Akın, Tayfun (Elsevier BV; 2012-09-12)
This paper presents a three-axis capacitive MEMS accelerometer implemented by fabricating lateral and vertical accelerometers in a same die with two alternative processes: a double glass modified dissolved wafer (DGM-DWP) and a double glass modified silicon-on-glass (DGM-SOG) processes. The accelerometers are implemented with a 35 mu m structural layer, and the three-axis accelerometer die measures 12mmx7mmx1mm in each process. Each process includes a second glass wafer which, not only allows implementing a...
Citation Formats
I. Comart, C. Cetintepe, E. Sagiroglu, Ş. Demir, and T. Akın, “Development and Modeling of a Wafer-Level BCB Packaging Method for Capacitive RF MEMS Switches,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, pp. 724–731, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38180.