Nanoscale considerations responsible for diverse macroscopic phase behavior in monosubstituted isobutyl-POSS/poly(ethylene oxide) blends

2017-12-14
Caydamli, Yavuz
Yıldırım, Erol
Shen, Jialong
Fang, Xiaomeng
Pasquinelli, Melissa A.
Spontak, Richard J.
Tonelli, Alan E.
Nanocomposites prepared by incorporating functionalized polyhedral oligomeric silsesquioxane (POSS) into polymer matrices afford a wide range of versatile hybrid materials for use in technologies ranging from cosmetics and pharmaceuticals to sensors and batteries. Here, we investigate the phase behavior of nanocomposites composed of poly(ethylene oxide) (PEO) and monosubstituted isobutyl POSS (iPOSS) modified with different functional moieties. Microscopic analyses of blends containing these iPOSS variants reveal the existence of different macroscopic morphologies and surface topologies. In the presence of octa-iPOSS, a POSS-rich surface cell motif reminiscent of breath patterns develops, whereas addition of allyl-iPOSS promotes the formation of surface plates. While aminopropyl-iPOSS forms dispersed aggregates, maleamic acid-iPOSS disperses in PEO with little effect on PEO crystal morphology. We perform rotational isomeric state Monte Carlo simulations to discern the effect of monosubstitution on the interaction energy between iPOSS and PEO, and establish the molecular-level origin for these observed differences in phase behavior.
SOFT MATTER

Suggestions

Nanomaterial-Enhanced All-Solid Flexible Zinc-Carbon Batteries
Hiralal, Pritesh; Imaizumi, Shinji; Ünalan, Hüsnü Emrah; Matsumoto, Hidetoshi; Minagawa, Mie; Rouvala, Markku; Tanioka, Akihiko; Amaratunga, Gehan A. J. (2010-05-01)
Solid-state and flexible zinc carbon (or Leclanche) batteries are fabricated using a combination of functional nanostructured materials for optimum performance. Flexible carbon nanofiber mats obtained by electrospinning are used as a current collector and cathode support for the batteries. The cathode layer consists of manganese oxide particles combined with single-walled carbon nanotubes for improved conductivity. A polyethylene oxide layer containing titanium oxide nanoparticles forms the electrolyte laye...
Nonequilibrium plasma aerotaxy of size controlled GaN nanocrystals
Üner, Necip Berker; Thimsen, Elijah (2020-02-01)
High quality gallium nitride (GaN) nanocrystals (NCs) are promising materials in a wide range of applications including optoelectronics, photonics and biomedical devices. Unlike II-VI semiconductors, the synthesis of free-standing GaN NCs is not well-established, and there is a need for a synthesis platform that can provide GaN NCs with tunable size and photonic properties. In this work, we present a flexible gas-phase synthesis method that can deliver crystalline, free-standing, pure GaN NCs with controlle...
Microstructural and dielectric properties of naphthalene based polyamide/β-Ni(OH)2 nanocomposites
Sezer, Selda; Öz, Erdinc; ALTIN, SERDAR; Vural, Sema; GÜLTEK, AHMET; KÖYTEPE, SÜLEYMAN; Nilüfer Kıvılcım, F. (2018-01-01)
Background: Aromatic polyamides are important materials having outstanding thermal, electronic and mechanical properties among high performance polymers and industrial plastics. In addition, aromatic polyamides can be utilized in electronic devices with their low dielectric constant which indicates the storage capacity of these devices. Objective: Free volume is very important for dielectric materials and increase in free volume of a polymer reduces its dielectric constant. The aims of the current study are...
Impact damage sensing of multiscale composites through epoxy matrix containing carbon nanotubes
Arronche, Luciana; La Saponara, Valeria; Yesil, Sertan; Bayram, Göknur (2013-06-05)
Carbon nanotubes are used to provide increased electrical conductivity for polymer matrix materials, thus offering a method to monitor the structure's health. This work investigates the effect of impact damage on the electrical properties of multiscale composite samples, prepared with woven fiberglass reinforcement and epoxy resin modified with as-received multi-walled carbon nanotubes (MWCNTs). Moreover, this study addresses potential bias from manufacturing, and investigates the effectiveness of resistanc...
CONJUGATED POLYMERS AND ORGANIC CATIONS FOR OPTOELECTRONIC APPLICATIONS
Yaşa, Mustafa; Toppare, Levent Kamil; Arslan Udum, Yasemin; Department of Polymer Science and Technology (2022-1-27)
There are several studies on organic solar cells based on conjugated polymers in literature, and various new materials are being designed. The Donor-Acceptor approach has been the most common approach for designing and synthesizing conjugated polymers. In this study, thienopyrroledione bearing conjugated polymers were synthesized via Stille and Suzuki polycondensation reactions. In the first part of this thesis, the polymers obtained via Stille polycondensation were employed to fabricate organic solar cells...
Citation Formats
Y. Caydamli et al., “Nanoscale considerations responsible for diverse macroscopic phase behavior in monosubstituted isobutyl-POSS/poly(ethylene oxide) blends,” SOFT MATTER, pp. 8672–8677, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38182.