Concentric Ring Structures as Efficient SERS Substrates

Cinel, Neval A.
Cakmakyapan, Semih
Ertaş, Gülay
Ozbay, Ekmel
Plasmonic nanopatterned structures that can work as highly efficient surface-enhanced Raman scattering (SERS) substrates are presented in this study. A "coupled" concentric ring structure has been designed, fabricated, tuned, and compared to an "etched" concentric ring structure and plain gold film via SERS experiments. The proposed design gives Raman signal intensity 630 times larger than plain gold film and 8 times larger than an "etched" concentric ring structure. The surface plasmons were imaged with the fluorescence imaging technique and supporting numerical simulations were done.


Metamaterial-based energy harvesting for GSM and satellite communication frequency bands
A metamaterial-based energy harvesting structure has been designed and experimentally tested in this study. The proposed structure has square and split ring resonators placed in different angles on the back and front sides for compatible multiband operation in energy harvesting. Resonance points have been defined at 900 MHz, 1.37 GHz, 1.61 GHz, 1.80 GHz, and 2.55 GHz, by simulation and experimental methods. These points correspond to Global System for Communication (GSM) 900, GSM 1800, Universal Mobile Tele...
Laser induced periodic surface structuring for surface enhanced raman spectroscopy
Özkarslıgil, Zeynep Tuğçe; Bek, Alpan; Department of Physics (2020)
In this study, our aim is to fabricate and characterize efficient substrates of surface enhanced Raman spectroscopy (SERS) utilizing the field enhancement due to hot spots made by recently developed method of laser induced periodic surface structuring (LIPSS). LIPSS is a cost-effective technique for rapid processing of almost any materials compared to conventional lithography methods. Coating of a thin silver film on LIPSS applied substrate surface provides to observe the localized surface plasmon effect fo...
Facile fabrication of Au-Ag alloy nanoparticles on filter paper: Application in SERS based swab detection and multiplexing
Khan, Ghazanfar Ali; Demirtaş, O. Özge; Bek, Alpan; Bhatti, Arshad Saleem; Ahmed, Waqqar (2022-05-01)
© 2022 Elsevier B.V.Facile fabrication of flexible substrates containing high concentration of nanoparticles (NPs) is very promising owing to their capability of swab-based surface-enhanced Raman scattering (SERS) trace detection. However, the background signal of the substrate could compromise the trace-detection capabilities. Moreover, the presence of fluorescent molecules may result in intense fluorescence background which could overshadow the Raman peaks. Herein, we demonstrate that the surfactant-free ...
Surface Enhanced Raman Spectroscopy of the plasmonic nanogratings obtained by Laser Induced Periodic Surface Structuring
Erkızan, Serena Nur; Bek, Alpan; Department of Physics (2023-1-31)
The research conducted in this study presents a novel method of generating highly sensitive Surface Enhanced Raman Spectroscopy (SERS) substrates by femtosecond laser writing techniques. Two different types of periodicity regimes are introduced by femtosecond laser-based nano-structuring of crystalline Silicon (Si) and generated patterns are classified as Low Spatial Frequency LIPSS (LSFL) and High Spatial Frequency LIPSS (HSFL). Quasi periodic, self-organized femtosecond laser written periodic nanostructur...
Nanostructure of montmorillonite barrier layers: A new insight into the mechanism of flammability reduction in polymer nanocomposites
Isitman, Nihat Ali; Kaynak, Cevdet (2011-12-01)
This study describes the mechanism of flammability reduction in flame-retarded polymer matrix organo-montmorillonite reinforced nanocomposites. Morphologies of untested polymer nanocomposites and char residues formed by combustion in the mass loss calorimeter are characterized by XRD and TEM techniques. It is postulated that a combination of well-dispersed montmorillonite platelets and flame retardants in the polymer matrix provides nano-structured char formation. Initial montmorillonite dispersion in flame...
Citation Formats
N. A. Cinel, S. Cakmakyapan, G. Ertaş, and E. Ozbay, “Concentric Ring Structures as Efficient SERS Substrates,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, pp. 0–0, 2013, Accessed: 00, 2020. [Online]. Available: