Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Opportunities and Challenges of Switched Reluctance Motor Drives for Electric Propulsion: A Comparative Study
Date
2017-03-01
Author
Bostancı, Emine
Parsapour, Amir
Fahimi, Babak
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
323
views
0
downloads
Cite This
Selection of the proper electric traction drive is an important step in design and performance optimization of electrified powertrains. Due to the use of high energy magnets, permanent magnet synchronous machines (PMSM) have been the primary choice in the electric traction motor market. However, manufacturers are very interested to find a permanent magnet-free alternative as a fallback option due to unstable cost of rare-earth metals and fault tolerance issues related to the constant permanent magnet excitation. In this paper, a new comprehensive review of electric machines (EMs) that includes various new switched reluctance machine topologies in addition to conventional EMs such as PMSM, induction machine, synchronous reluctance machine (SynRel), and PM-assisted SynRel is presented. This paper is based on performances such as power density, efficiency, torque ripple, vibration and noise, and fault tolerance. These systematic examinations prove that recently proposed magnetic configurations such as double-stator switched reluctance machine can be a reasonable substitute for permanent magnet machines in electric traction applications.
Subject Keywords
Double-stator switched reluctance machine (DSSRM)
,
Motor drives
,
Mutually coupled switched reluctance machine (MCSRM)
,
Road vehicle electric propulsion
,
Segmental rotor switched reluctance machine (SRSRM)
URI
https://hdl.handle.net/11511/38520
Journal
IEEE Transactions on Transportation Electrification
DOI
https://doi.org/10.1109/tte.2017.2649883
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Optimum design of multistep spur gearbox
Öztürk, Fatih Mehmet; Department of Mechanical Engineering (2005)
Optimum design of multistep gearbox, since many high-performance power transmission applications (e.g., automotive, space industry) require compact volume, has become an important interest area. This design application includes more complicated problems that are not taken into account while designing single stage gear drives. Design applications are generally made by trial and error methods depending on the experience and the intuition of the designer. In this study, using Visual Basic 6.0, an interactive p...
Prediction of torque and inductance displacement characteristics of asymmetrically slotted variable-reluctance motors using a simplified model for numerical field solution
Ertan, Hulusi Bülent (1999-09-01)
For prediction of static and dynamic performance of doubly-salient motors, it is essential to know their flux linkage-position-excitation characteristics and also the static torque characteristics. At the design stage determination of these characteristics presents difficulties because of highly nonlinear behavior of the magnetic circuit. It is possible to use numerical field solution of the complete motor to obtain this information. This, however, requires expertise on a professional program and may be exp...
An analytical approach for determination of optimal stator/rotor saliency number of a swıtched reluctance motor
Kılınç, Cem Erkan; Bostancı, Emine; Department of Electrical and Electronics Engineering (2020)
The purpose of this study is to seek the optimal stator and rotor saliency number of a switched reluctance motor (SRM) for hybrid electrical vehicle (HEV) applications. For this purpose, first a previously developed SRM analysis software is investigated to identify possible errors in implementation of both the theory and the coding. Performance prediction method is based on the use of normalized force and permeance data produced via numerical field solution, and a polynomial based interpolation is introduce...
Tümleşik Modüler Motor Sürücü Sistemi Tasarımı
Uğur, Mesut; Keysan, Ozan (null; 2017-10-25)
Bu çalışmada, bir Tümleşik Modüler Motor Sürücü (TMMS) sistemi tasarımı gerçekleştirilmiştir. TMMS sistemi için modüler bir kesirli oluklu, konsantre sargılı (FSCW), sabit mıknatıslı senkron motor (PMSM) ile birlikte Galyum Nitrat (GaN) teknolojisine dayalı modüler motor sürücü güç katı tasarımı yapılmıştır. Konvansiyonel sistemlere göre %2’lik verim artışı sağlanmıştır. Tümleşik motor sürücü sistemine uygun DA bara kondansatör seçimi gerçekleştirilmiştir. Interleaving tekniği kullanılarak kondansatör boyut...
Optimal design of synchronous reluctance machines
Kiani, Morgan; Bostancı, Emine; Fahimi, Babak (2017-12-15)
Electric machines are optimized to the extent of their magnetic configuration and manufacturability. Thanks to recent advances in development of composite material (SMC), 3-D printing, and programmable magnets, manufacturing capabilities have changed dramatically. Introducing of cloud computing and impressive computational resources has opened new opportunities in virtual prototyping in a multi-physics environment. These enabling technologies present a potential for a transformative approach in optimal desi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Bostancı, A. Parsapour, and B. Fahimi, “Opportunities and Challenges of Switched Reluctance Motor Drives for Electric Propulsion: A Comparative Study,”
IEEE Transactions on Transportation Electrification
, pp. 58–75, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38520.