Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding

2015-04-01
Torunbalci, Mustafa Mert
Alper, Said Emre
Akın, Tayfun
This paper presents a new method for wafer-level hermetic packaging of MEMS devices using a relatively low temperature anodic bonding technique applied to the recently developed advanced MEMS (aMEMS) process. The aMEMS process uses vertical feedthroughs formed on an SOI cap wafer, eliminating the need for any complex via-refill or trench-refill steps while forming the vertical feedthroughs. The hermetic sealing process is achieved at 350 degrees C by using an anodic bonding potential of 600 V. The bonding process does not require any sealing material on neither the cap nor the sensor wafer. The packaging yield is experimentally verified to be 94% for 4 wafers packaged up to date, and the cavity pressure is measured to be as low as 1 mTorr with successfully activated Titanium thin film getter. The cavity pressure can be set to different levels ranging from 1 mTorr up to 5 Torr, simply by varying the outgassing period and utilization of the getter material, enabling the proposed method be used for various types of MEMS devices with different pressure requirements. The pressure inside the encapsulated cavities has been monitored for 6 months since the first prototypes, and it is observed that pressure is stable below 5 mTorr throughout this period. The shear strength of 6 packages is measured to be above 10 MPa, whereas the shear failure occurs not at the bonding interface but the vertical feedthroughs, which have lower strength compared to the bonding region. The robustness of the packages is tested by subjecting them to cyclic thermal tests between 100 degrees C and 25 degrees C, and no degradation is observed in the hermeticity of the packages at the end of this period. The vacuum level of the packages is also verified to be unchanged by storing the packages at 150 degrees C for 24 h. Moreover, it is experimentally verified that the hermeticity of the packaged chips can withstand ultra-high temperature shocks as high as 400 degrees C for 5 min.
SENSORS AND ACTUATORS A-PHYSICAL

Suggestions

Wafer level hermetic encapsulation of MEMS inertial sensors using SOI cap wafers with vertical feedthroughs
Mert Torunbalci, Mustafa; Alper, Said Emre; Akın, Tayfun (2014-02-26)
This paper reports a new, inherently simple, and high-yield wafer-level hermetic encapsulation method developed for MEMS inertial sensors, enabling lead transfer using vertical feedthroughs that do not require any complex via-refill or trench-refill processes. The process requires only seven masks to complete both the sensor and cap wafers, whereas the combined yield for the sealing and lead transfer is experimentally verified to be above 90%. Hermetic encapsulation is achieved by Au-Si eutectic bonding, an...
A Method of Fabricating Vacuum Packages with Vertical Feedthroughs in a Wafer Level Anodic Bonding Process
Torunbalci, Mustafa Mert; Alper, Said Emre; Akın, Tayfun (2014-09-10)
This paper presents a new method for wafer level vacuum packaging of MEMS devices using anodic bonding together with vertical feedthroughs formed on an SOI cap wafer, eliminating the need for any sealing material or any complex via-refill or trench-refill vertical feedthrough steps. The packaging yield is experimentally verified to be above 95%, and the cavity pressure is characterized to be as low as 1 mTorr with the help of a thin-film getter. The shear strength of several packages is measured to be above...
THE ADVANCED MEMS (aMEMS) PROCESS FOR FABRICATING WAFER LEVEL VACUUM PACKAGED SOI-MEMS DEVICES WITH EMBEDDED VERTICAL FEEDTHROUGHS
Torunbalci, M. M.; Alper, S. E.; Akın, Tayfun (2015-06-25)
This paper presents a novel, inherently simple and low-cost fabrication and hermetic packaging method developed for SOI-MEMS devices, where an SOI wafer is used for the fabrication of MEMS structures as well as vertical feedthroughs, while a glass cap wafer is used for hermetic encapsulation and routing metallization. Glass-to-silicon anodically bonded seals yield a very stable cavity pressure of 150 mTorr after 15 days. The shear strength of the fabricated packages is above 7 MPa. Temperature cycling and u...
Advanced MEMS Process for Wafer Level Hermetic Encapsulation of MEMS Devices Using SOI Cap Wafers With Vertical Feedthroughs
Torunbalci, Mustafa Mert; Alper, Said Emre; Akın, Tayfun (2015-06-01)
This paper reports a novel and inherently simple fabrication process, so-called advanced MEMS (aMEMS) process, that is developed for high-yield and reliable manufacturing of wafer-level hermetic encapsulated MEMS devices. The process enables lead transfer using vertical feedthroughs formed on an Silicon-On-Insulator (SOI) wafer without requiring any complex via-refill or trench-refill processes. It requires only seven masks to fabricate the hermetically capped sensors with an experimentally verified process...
Wafer level vacuum packaging of mems sensors and resonators
Torunbalcı, Mustafa Mert; Akın, Tayfun; Arıkan, Mehmet Ali Sahir; Department of Micro and Nanotechnology (2011)
This thesis presents the development of wafer level vacuum packaging processes using Au-Si eutectic and glass frit bonding contributing to the improvement of packaging concepts for a variety of MEMS devices. In the first phase of this research, micromachined resonators and pirani vacuum gauges are designed for the evaluation of the vacuum package performance. These designs are verified using MATLAB and Coventorware finite element modeling tool. Designed resonators and pirani vacuum gauges and previously dev...
Citation Formats
M. M. Torunbalci, S. E. Alper, and T. Akın, “Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding,” SENSORS AND ACTUATORS A-PHYSICAL, pp. 169–176, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38940.