A Method of Fabricating Vacuum Packages with Vertical Feedthroughs in a Wafer Level Anodic Bonding Process

2014-09-10
Torunbalci, Mustafa Mert
Alper, Said Emre
Akın, Tayfun
This paper presents a new method for wafer level vacuum packaging of MEMS devices using anodic bonding together with vertical feedthroughs formed on an SOI cap wafer, eliminating the need for any sealing material or any complex via-refill or trench-refill vertical feedthrough steps. The packaging yield is experimentally verified to be above 95%, and the cavity pressure is characterized to be as low as 1 mTorr with the help of a thin-film getter. The shear strength of several packages is measured to be above 15MPa.

Suggestions

THE ADVANCED MEMS (aMEMS) PROCESS FOR FABRICATING WAFER LEVEL VACUUM PACKAGED SOI-MEMS DEVICES WITH EMBEDDED VERTICAL FEEDTHROUGHS
Torunbalci, M. M.; Alper, S. E.; Akın, Tayfun (2015-06-25)
This paper presents a novel, inherently simple and low-cost fabrication and hermetic packaging method developed for SOI-MEMS devices, where an SOI wafer is used for the fabrication of MEMS structures as well as vertical feedthroughs, while a glass cap wafer is used for hermetic encapsulation and routing metallization. Glass-to-silicon anodically bonded seals yield a very stable cavity pressure of 150 mTorr after 15 days. The shear strength of the fabricated packages is above 7 MPa. Temperature cycling and u...
Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding
Torunbalci, Mustafa Mert; Alper, Said Emre; Akın, Tayfun (2015-04-01)
This paper presents a new method for wafer-level hermetic packaging of MEMS devices using a relatively low temperature anodic bonding technique applied to the recently developed advanced MEMS (aMEMS) process. The aMEMS process uses vertical feedthroughs formed on an SOI cap wafer, eliminating the need for any complex via-refill or trench-refill steps while forming the vertical feedthroughs. The hermetic sealing process is achieved at 350 degrees C by using an anodic bonding potential of 600 V. The bonding p...
Gold-tin eutectic bonding for hermetic packaging of MEMS devices with vertical feedthroughs
Torunbalci, Mustafa Mert; Demir, Eyup Can; Donmez, Inci; Alper, Said Emre; Akın, Tayfun (2014-11-05)
This paper presents a new method for wafer-level hermetic encapsulation of MEMS devices using low-temperature (280 to 300°C) Au-Sn eutectic bonding applied to the recently developed advanced MEMS (A-MEMS) process of the METU-MEMS Research Center, which uses an SOI cap wafer with vertical feedthroughs that does not need any complex via-refill or trench-refill process steps. The Au-Sn eutectic bonding process is achieved at 300°C with a bond pressure of 2 MPa by using a sealing alloy thickness less than 1.5 μ...
A NOVEL FABRICATION AND WAFER LEVEL HERMETIC SEALING METHOD FOR SOI-MEMS DEVICES USING SOI CAP WAFERS
Torunbalci, Mustafa Mert; Alper, Said Emre; Akın, Tayfun (2015-01-22)
This paper presents a novel and inherently simple all-silicon fabrication and hermetic packaging method developed for SOI-MEMS devices, enabling lead transfer using vertical feedthroughs formed on an SOI cap wafer. The processes of the SOI cap wafer and the SOI-MEMS wafer require a total of five inherently-simple mask steps, providing a combined process and packaging yield as high as 95%. The hermetic encapsulation is achieved by Au-Si eutectic bonding at 400 degrees C. The package pressure is measured as 1...
A WAFER LEVEL VACUUM PACKAGING TECHNOLOGY FOR MEMS BASED LONG-WAVE INFRARED SENSORS
Demirhan Aydın, Gülşah; Akın, Tayfun; Kalay, Yunus Eren; Department of Micro and Nanotechnology (2022-8-11)
This thesis proposes a new approach to obtain a wafer level vacuum packaging that satisfies the requirements of the thermal sensors at low cost and with high performance. The moth-eye structures are formed on both side of a polished flat silicon wafer without any cavity to allow the transmission of the infrared radiation in long wave infrared region (LWIR). Then, this wafer is bonded to another spacer wafer using Au-In Trans-liquid phase (TLP) approach that allows bonding at low temperature (around 200℃); t...
Citation Formats
M. M. Torunbalci, S. E. Alper, and T. Akın, “A Method of Fabricating Vacuum Packages with Vertical Feedthroughs in a Wafer Level Anodic Bonding Process,” 2014, vol. 87, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34890.