Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters
Date
2015-12-04
Author
Ulusan, H.
Gharehbaghi, K.
Zorlu, O.
Muhtaroglu, A.
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
184
views
0
downloads
Cite This
This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 mu W at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 mu W of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.
Subject Keywords
General Physics and Astronomy
URI
https://hdl.handle.net/11511/38989
DOI
https://doi.org/10.1088/1742-6596/660/1/012023
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A fully integrated autonomous power management system with high power capacity and novel MPPT for thermoelectric energy harvesters in IoT/wearable applications
Tabrizi, Hamed Osouli; Jayaweera, H. M. P. C.; Muhtaroglu, Ali (2017-11-17)
This paper reports a fully integrated autonomous power management system for thermoelectric energy harvesting with application in batteryless IoT/Wearable devices. The novel maximum power point tracking (MPPT) algorithm does not require open circuit voltage measurement. The proposed system delivers 0.5 mA current with 1 V regulated output based on simulations, which is the highest output current for a fully integrated converter reported in the literature for ultra-low voltage applications, to the best knowl...
Triple Hybrid Energy Harvesting Interface Electronics
Ulusan, H.; Chamanian, S.; Pathirana, W. M. P. R.; Zorlu, O.; Muhtaroglu, A.; Külah, Haluk (2016-12-09)
This study presents a novel triple hybrid system that combines simultaneously generated power from thermoelectric (TE), vibration-based electromagnetic (EM) and piezoelectric (PZT) harvesters for a relatively high power supply capability. In the proposed solution each harvesting source utilizes a distinct power management circuit that generates a DC voltage suitable for combining the three parallel supplies. The circuits are designed and implemented in 180 nm standard CMOS technology, and are terminated wit...
An Autonomous Interface Circuit Based on Self-Investing Synchronous Energy Extraction for Low Power Piezoelectric Energy Harvesters
ÇİFTCİ, BERKAY; Chamanian, S.; Uluşan, H.; Külah, Haluk (2019-12-04)
This paper presents a self-powered interface circuit to rectify and manage the AC output of the piezoelectric energy harvesters (PEH) by utilizing Self-Investing Synchronous Electric Charge Extraction technique (SI-SECE). The system invests charges from the battery to PEH to improve the electromechanical coupling factor and consequently the energy extraction by utilizing only one external component. The circuit was implemented in 180 nm CMOS technology where high voltage (HV) MOS transistors are utilized to...
Enhancement of image quality by using metamaterial inspired energy harvester
ALKURT, FATİH ÖZKAN; ALTINTAŞ, OLCAY; Ozakturk, Meliksah; KARAASLAN, MUHARREM; AKGÖL, OĞUZHAN; ÜNAL, EMİN; Sabah, Cumali (Elsevier BV, 2020-01-09)
Metamaterial energy harvester based subwavelength imaging structure is presented. Besides, 2x2 array patch antenna is designed to create incident radiated signal towards the proposed harvester structure. Harvested energy is converted to DC voltage signal by using Schottky diodes and each cell is represented by 256 grey levelled pixel value. Therefore, any incident electromagnetic wave placed in the operating frequency range can be monitorized. In the experimental study, experiments are realized with and wit...
Advanced plasmonic interfaces for optimized light trapping in photovoltaics
SALEH, Z. M.; NASSER, HİSHAM; ÖZKOL, ENGİN; Bek, Alpan; Turan, Raşit (2017-02-25)
Plasmonic interfaces are integrated to photovoltaic devices to enhance light trapping and improve efficiency. The optimum thickness of the spacer layer used to passivate the absorber layer and adjust its distance from the metal nanoparticles remains unclear. We integrate plasmonic interfaces consisting of Ag nanoparticles and silicon nitride spacers of different thicknesses to the back of a-Si:H absorber to investigate the optimum thickness of the spacer layer and use the photocurrent in a-Si:H to indicate ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Ulusan, K. Gharehbaghi, O. Zorlu, A. Muhtaroglu, and H. Külah, “A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters,” 2015, vol. 660, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38989.