Hide/Show Apps

Triple Hybrid Energy Harvesting Interface Electronics

Ulusan, H.
Chamanian, S.
Pathirana, W. M. P. R.
Zorlu, O.
Muhtaroglu, A.
Külah, Haluk
This study presents a novel triple hybrid system that combines simultaneously generated power from thermoelectric (TE), vibration-based electromagnetic (EM) and piezoelectric (PZT) harvesters for a relatively high power supply capability. In the proposed solution each harvesting source utilizes a distinct power management circuit that generates a DC voltage suitable for combining the three parallel supplies. The circuits are designed and implemented in 180 nm standard CMOS technology, and are terminated with a schottky diode to avoid reverse current flow. The harvested AC signal from the EM harvester is rectified with a self-powered AC-DC doubler, which utilizes active diode structures to minimize the forward-bias voltage drop. The PZT interface electronics utilizes a negative voltage converter as the first stage, followed by synchronous power extraction and DC-to-DC conversion through internal switches, and an external inductor. The ultra-low voltage DC power harvested by the TE generator is stepped up through a charge-pump driven by an LC oscillator with fully-integrated center-tapped differential inductors. Test results indicate that hybrid energy harvesting circuit provides more than 1 V output for load resistances higher than 100 k Omega (10 mu W) where the stand-alone harvesting circuits are not able to reach 1 V output. This is the first hybrid harvester circuit that simultaneously extracts energy from three independent sources, and delivers a single DC output.