Accurate solutions of scattering problems involving low-contrast dielectric objects with surface integral equations

Download
2007-11-16
We present the stabilization of the surface integral equationsfor accurate solutions of scattering problems involvinglow-contrast dielectric objects. Unlike volume formulations,conventional surface formulations fail to provide accurateresults for the scatteredfields when the contrast of theobject is small. Therefore, surface formulations are requiredto be stabilized by extracting the nonradiating parts of theequivalent currents. In addition to previous strategies forthe stabilization, we introduce a novel procedure calledfield-based stabilization (FBS) based on usingfictitiousincidentfields and rearranging the right-hand-side of theequations. The results show that the formulations usingFBS provide accurate results even for scattering problemsinvolving extremely low-contrast objects, while the extra costdue to the stabilization procedure is negligible.

Suggestions

Comparison of Integral-Equation Formulations for the Fast and Accurate Solution of Scattering Problems Involving Dielectric Objects with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2009-01-01)
We consider fast and accurate solutions of scattering problems involving increasingly large dielectric objects formulated by surface integral equations. We compare various formulations when the objects are discretized with Rao-Wilton-Glisson functions, and the resulting matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). For large problems, we show that a combined-field formulation, namely, the electric and magnetic current combined-field integral equation (...
Rigorous Solutions of Electromagnetic Problems Involving Hundreds of Millions of Unknowns
Ergül, Özgür Salih (2011-02-01)
Accurate simulations of real-life electromagnetic problems with integral equations require the solution of dense matrix equations involving millions of unknowns. Solutions of these extremely large problems cannot be easily achieved, even when using the most powerful computers with state-of-the-art technology. Hence, many electromagnetic problems in the literature have been solved by resorting to various approximation techniques, without controllable error. In this paper, we present full-wave solutions of sc...
Fast and accurate solutions of electromagnetics problems involving lossy dielectric objects with the multilevel fast multipole algorithm
Ergül, Özgür Salih (2012-03-01)
Fast and accurate solutions of electromagnetic scattering problems involving lossy dielectric objects are considered. Problems are formulated with two recently developed formulations, namely, the combined-tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE), and solved iteratively using the multilevel fast multipole algorithm (MLFMA). Iterative solutions and accuracy of the results are investigated in detail for diverse geometries, frequencies, and con...
Accuracy of the Surface Integral-equation Formulations for Large Negative Permittivity Values
Karaosmanoglu, B.; Ergül, Özgür Salih (2017-05-25)
Computational solutions of plasmonic problems involving metals at optical frequencies formulated with surface integral equations are considered. Numerical inaccuracies arise when using the conventional formulations for penetrable bodies, especially as the negative real permittivity becomes very large at the lower frequencies of the optical spectrum. In order to close the gap between plasmonic and perfectly conducting simulations, it is required to extend the applicability of surface integral equations to in...
Rigorous solutions of large-scale dielectric problems with the parallel multilevel fast multipole algorithm
Ergül, Özgür Salih (2011-08-20)
We present fast and accurate solutions of large-scale electromagnetics problems involving three-dimensional homogeneous dielectric objects. Problems are formulated rigorously with the electric and magnetic current combined-field integral equation (JMCFIE) and solved iteratively with the multilevel fast multipole algorithm (MLFMA). In order to solve large-scale problems, MLFMA is parallelized efficiently on distributed-memory architectures using the hierarchical partitioning strategy. Efficiency and accuracy...
Citation Formats
Ö. S. Ergül, “Accurate solutions of scattering problems involving low-contrast dielectric objects with surface integral equations,” 2007, vol. 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46561.