Geological and thermal characterization of EskiAYehir region oil shales

In this study, geological consideration and thermal characterization of oil shale samples were studied. Geological considerations of oil shale samples were studied using Rock-Eval analysis and it was observed that the kerogen type of all oil shale samples were in the majority of Type-I and II. Thermal characteristics and kinetics analysis of oil shale samples were studied by non isothermal differential scanning calorimeter (DSC) and thermogravimetry (TG/DTG). In air atmosphere, two different mechanisms causing loss of mass were observed known as loss of moisture, and decomposition of kerogen and bitumen. Kinetic parameters of the samples are determined using ASTM-I and II (DSC), Kissinger, and KAS (TG-DTG) kinetic models and the results are discussed.


Thermal investigation of Seyitomer oil shale
Kök, Mustafa Verşan (2001-03-22)
This research presents the results of experimental study on the thermal investigation of Seyitomer oil shale sample. Thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) were used to determine the thermal behaviour of the oil shale sample. From the experiments and kinetic analysis, it was observed that Seyitomer oil shale sample have more than one reaction region where the activation energies of the first region are higher. Higher heating rates resulted in higher reaction temperatures both ...
Thermal characterization of different origin class-G cements
Kök, Mustafa Verşan (2014-02-01)
In this study, thermal characteristics and kinetics of three different origin class-G cements (Mix, Bolu, and Nuh) were studied using thermogravimetry (TG/DTG) and differential scanning calorimeter (DSC). In DSC curves at different heating rates a number of peaks were observed consistently in different temperature intervals. TG/DTG is used to identify the detected phases and the corresponding mass loss. In the dehydration kinetic study of the different origin class-G cement samples, three different methods ...
Thermal behavior and kinetics of crude oils at low heating rates by differential scanning calorimeter
Kök, Mustafa Verşan (2012-04-01)
The objective of this research was to investigate thermal behavior and kinetics of different origin crude oils in limestone matrix by differential scanning calorimeter (DSC) at low heating rates. In DSC experiments, three distinct reaction regions were identified in all of the crude oil + limestone mixtures known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO) respectively. Kinetic analysis of the crude oil samples was determined by different models known as AST...
Thermal analysis and kinetics of biomass samples
Kök, Mustafa Verşan (2013-02-01)
In this research, combustion behavior of agricultural residues known as miscanthus, poplar wood, and rice husk was investigated using thermal analysis techniques. Differential scanning calorimeter (DSC) and thermogravimetry (TG-DTG) techniques were used. Combustion experiments were performed at five different heating rates (5, 10, 15, 25, and 50 degrees C/min). The reaction regions, ignition and burnout temperatures, heat flow rate values of biomass samples are determined. Activation energy of the biomass s...
Comparative Pyrolysis and Combustion Kinetics of Oil Shales
Kök, Mustafa Verşan (2000-02-01)
In this research, thermal characteristics and kinetic parameters of eight Turkish oil shale samples were determined by thermogravimetry (TG/DTG) at non-isothermal heating conditions both for pyrolysis and combustion processes. A general computer program was developed and the methods are compared with regard to their accuracy and the ease of interpretation of the kinetics of thermal decomposition. Activation energies of the samples were determined by five different methods and the results are discussed.
Citation Formats
M. V. Kök, “Geological and thermal characterization of EskiAYehir region oil shales,” JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, pp. 367–372, 2014, Accessed: 00, 2020. [Online]. Available: