Solar-thermal driven drying technologies for large-scale industrial applications: State of the art, gaps, and opportunities

2020-7-01
Kamfa, In'am
Fluch, Juergen
Bartali, Ruben
Baker, Derek Keıth
Research and Innovation (R&I) on Large-scale Industrial Solar-thermal driven Drying technologies (LISDs) is one of the strategies required to transition to a low-carbon energy future. The objective for this work is to guide future R&I on LISDs by defining the state of the art, gaps, and opportunities. To provide a high-level perspective on the current state of solar drying research, results are presented from an analysis of the content relevant to LISDs found in 45 solar drying Review Articles published in journals over the past 25 years. A conclusion is that most of the existing solar drying research is not focused on LISDs. To build-on these existing 45 solar drying Review Articles, results are presented from an analysis of 30 Original Research Articles with significant content relevant to LISDs published over the past 5 years. A gap is identified in coupling existing or slightly modified solar thermal collectors with existing or slightly modified industrial drying technologies to create indirect LISDs. To facilitate formulating new coupling strategies, the drying characteristics most relevant to this coupling are described and four fundamental classes of industrial dryer technologies are defined based on the underlying heat transfer mechanism, which then impacts the appropriate collector choice. At their most fundamental level, many of the technologies needed to couple solar collectors and industrial dryers to create novel indirect LISDs are not unique to indirect LISDs, but rather can be generalized across a wide range of Solar Heat for Industrial Processes (SHIP) applications, and integration issues are discussed at a more fundamental SHIP level. The technical and economic characteristics of 19 existing LISDs installations throughout the world are presented, and potential and emerging areas discussed.
INTERNATIONAL JOURNAL OF ENERGY RESEARCH

Suggestions

Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells
Soltanpoor, Wiria; Dreessen, Chris; Şahiner, Mehmet Cem; Susic, Isidora; Afshord, Amir Zarean; Chirvony, Vladimir S.; Boix, Pablo P.; Günbaş, Emrullah Görkem; Yerci, Selçuk; Bolink, Henlk J. (2020-08-01)
The recent sky-rocketing performance of perovskite solar cells has triggered a strong interest in further upgrading the fabrication techniques to meet the scalability requirements of the photovoltaic industry. The integration of vapor deposition into the solution process in a sequential fashion can boost the uniformity and reproducibility of the perovskite solar cells. In addition, mixed-halide perovskites have exhibited outstanding crystallinity and higher stability compared with iodide-only perovskite. An...
Investigation of olive mill sludge treatment using a parabolic trough solar collector
Ben Othman, Fares; Eddhibi, Fathia; Bel Hadj Ali, Abdessalem; Fadhel, Abdelhamid; Bayer, Özgür; Tarı, İlker; Guizani, Amenallah; Balghouthi, Moncef (2022-01-15)
The olive mill sludge treatment system developed in this study is an indirect solar dryer driven by a solar parabolic trough collector (PTC). A heat exchanger is implemented to heat air with hot oil coming from the solar collector. The developed hot air dryer can treat up to 50 kg of olive mill sludge distributed over six trays at once. The designed system and its components are described, along with their experimental and simulated performance evaluations. With a mean direct normal irradiation (DNI) higher...
MONITORING, ANALYSIS, AND SIMULATION OF PHOTOVOLTAIC HEAT ISLAND EFFECT IN TURKEY: SEKBANDEMIRLI SOLAR POWER PLANT FIELD STUDY
Demirezen, Emre; Akınoğlu, Bülent Gültekin; Özden, Talat; Department of Earth System Science (2022-1-18)
Today, solar energy conversion technologies, which are among the methods of obtaining renewable, sustainable, and clean energy, show rapid development. One of the most common technologies is Photovoltaic Solar Power Plant (PVPP), which provides electricity by direct conversion of the energy carried by the sunlight (or daylight). These power plants are socially accepted in environmentally-friendly and economical energy production. However, there are some debates about the environmental impacts of these power...
Dual-band perfect metamaterial absorber for solar cell applications
Rufangura, Patrick; Sabah, Cumali (2015-10-01)
The efficiency of solar photovoltaic (PV) cells has been one of the major problems impeding its global adoption as one of the sustainable substitutes to fossil fuel based technologies. Metamaterial (MTM) based solar cells offer an opportunity towards increasing the system efficiency by enhancing the total absorbed solar radiation incident on this device. In this study, a nanostructure-based MTM perfect absorber has been designed and simulated. By adjusting geometrical parameters and MTM structure properties...
SOLAR IRRADIATION ESTIMATION ON A SOLAR POWERED UAV OVER A MISSION COURSE
Ozcan, Guclu; Alemdaroglu, Nafiz (2015-06-12)
This paper is about solar irradiation estimation on a solar powered UAV over its mission course [1]. Solar irradiation estimation and maximizing the solar energy collection are critical for solar powered UAVs and their performance. In this paper main focus is on solar irradiation calculations and comparison of two possible flight paths for solar energy collection during a transport or inspection mission.
Citation Formats
I. Kamfa, J. Fluch, R. Bartali, and D. K. Baker, “Solar-thermal driven drying technologies for large-scale industrial applications: State of the art, gaps, and opportunities,” INTERNATIONAL JOURNAL OF ENERGY RESEARCH, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39725.