Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Integration of solar energy and industrial waste heat into an industrial zone with heat distribution networkand optimization of energy sources for units
Download
index.pdf
Date
2019
Author
Karımı, Sasan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
1
downloads
In the context of European Union INSHIP (Integrating National Research Agendas on Solar Heat for Industrial Process) project, solar energy and industrial waste heat integration into two food industry Units are simulated and optimized in Izmir, Turkey. Two Units could be connected by a Heat Distribution Network (HDN) to share energy between them. Unit’s thermal systems simulation and energy sources optimization is done by TRNSYS and MATLAB respectively, to use both software capabilities. In each time interval, initially MATLAB models Configurations’ total fuel cost by nonlinear objective functions. Then it minimizes obtained functions with nonlinear optimization method and finally, based on optimization results, MATLAB controls TRNSYS components to operate Units in optimal condition with minimum cost. In fact, Thermal systems simulation and optimization is done simultaneously in this study. Simulations and optimizations are done for February and June as selected simulation periods. Four different Configurations are defined and investigated in separated sections, to simulate Units with different solar energy or industrial waste heat integration options.
Subject Keywords
Waste heat.
,
Nonlinear Optimization
,
Heat Distribution Network
,
Solar Process Heat.
URI
http://etd.lib.metu.edu.tr/upload/12623710/index.pdf
https://hdl.handle.net/11511/44051
Collections
Graduate School of Natural and Applied Sciences, Thesis