Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Discrimination of heavy metal acclimated environmental strains by chemometric analysis of FTIR spectra
Date
2020-10-01
Author
Kepenek, Eda Seyma
Severcan, Mete
Gözen, Ayşe Gül
SEVERCAN, FERİDE
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
53
views
0
downloads
Heavy metal acclimated bacteria are profoundly the preferred choice for bioremediation studies. Bacteria get acclimated to toxic concentrations of heavy metals by induction of specific enzymes and genetic selection favoring new metabolic abilities leading to activation of one or several of resistance mechanisms creating bacterial populations with differences in resistance profile and/or level. Therefore, to use in bioremediation processes, it is important to discriminate acclimated bacterial populations and choose a more resistant strain. In this study, we discriminated heavy metal acclimated bacteria by using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy and multivariate analysis methods namely Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA). Two acclimation methods, acute and gradual, were used which cause differences in molecular changes resulting in bacterial populations with different molecular and resistance profiles. Brevundimonas sp., Gordonia sp., and Microbacterium oxydans were exposed to the toxic concentrations of Cd (30 mu g/ml) or Pb (90 mu g/ml) by using broth medium as a growth media. Our results revealed that PCA and HCA clearly discriminated the acute-acclimated, gradual acclimated, and control bacteria from each other in protein, carbohydrate, and whole spectral regions. Furthermore, we classified acclimated (acute and gradual) and control bacteria more accurately by using SIMCA with 99.9% confidence. This study demonstrated that heavy metal acclimated and control group bacteria can be discriminated by using chemometric analysis of FTIR spectra in a powerful, cost-effective, and handy way. In addition to the determination of the most appropriate acclimation procedure, this approach can be used in the detection of the most resistant bacterial strains to be used in bioremediation studies.
Subject Keywords
Public Health, Environmental and Occupational Health
,
Pollution
,
Health, Toxicology and Mutagenesis
,
General Medicine
URI
https://hdl.handle.net/11511/39818
Journal
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
DOI
https://doi.org/10.1016/j.ecoenv.2020.110953
Collections
Department of Biology, Article