Accuracy and efficiency improvements in iterative hybridization of the method of moments MoM and physical optics PO

2016-04-15
Full-wave electromagnetic solutions of electrically large objects require large amounts of computer storage and CPU power. Therefore, full-wave techniques, such as the method of moments (MoM), are frequently hybridized with approximate methods like physical optics (PO). As a successful example of this approach, an efficient iterative MoM-PO (EI-MoM-PO) method, which effectively combines MoM and PO to reduce the computational time while providing acceptable accuracy, was proposed. In this paper, the multilevel fast multipole algorithm is employed to further increase the efficiency and accuracy of the EI-MoM-PO method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed approach.
10th European Conference on Antennas and Propagation (EuCAP)

Suggestions

Optimal design of synchronous reluctance machines
Kiani, Morgan; Bostancı, Emine; Fahimi, Babak (2017-12-15)
Electric machines are optimized to the extent of their magnetic configuration and manufacturability. Thanks to recent advances in development of composite material (SMC), 3-D printing, and programmable magnets, manufacturing capabilities have changed dramatically. Introducing of cloud computing and impressive computational resources has opened new opportunities in virtual prototyping in a multi-physics environment. These enabling technologies present a potential for a transformative approach in optimal desi...
Analysis and modeling of routing and security problems in wireless sensor networks with mathematical programming
İncebacak, Davut; Baykal, Nazife; Bıçakcı, Kemal; Department of Information Systems (2013)
Wireless Sensor Networks (WSNs) are composed of battery powered small sensor nodes with limited processing, memory and energy resources. Self organization property together with infrastructureless characteristics of WSNs make them favorable solutions for many applications. Algorithms and protocols developed for WSNs must consider the characteristics and constraints of WSNs but since battery replenishment is not possible or highly challenging for sensor nodes, one of the major concerns in designing network p...
Beam modulation in double gap virtual cathode oscillator
Küçük, İbrahim Semih; Demir, Şimşek; Department of Electrical and Electronics Engineering (2018)
Vircator is a promising high power microwave device when its simplicity, frequency tunability, lack of external magnetic field source are considered. Vircator gains importance especially susceptibility testing to electromagnetic pulses of electronic equipments with its tunability. Apart from advantages, main bottleneck of the vircator is its low efficiency. Tunability and efficiency enhancement studies are still continued in literature. Double gap vircator draws attention due to its tunability, generation f...
Fast and accurate solutions of electromagnetics problems involving lossy dielectric objects with the multilevel fast multipole algorithm
Ergül, Özgür Salih (2012-03-01)
Fast and accurate solutions of electromagnetic scattering problems involving lossy dielectric objects are considered. Problems are formulated with two recently developed formulations, namely, the combined-tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE), and solved iteratively using the multilevel fast multipole algorithm (MLFMA). Iterative solutions and accuracy of the results are investigated in detail for diverse geometries, frequencies, and con...
Efficient Multilayer Iterative Solutions of Electromagnetic Problems Using Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Ergül, Özgür Salih (2017-01-01)
We consider efficient iterative solutions of large-scale electromagnetic problems involving metallic objects. For fast iterative solutions, a multilayer scheme using approximate forms of the multilevel fast multipole algorithm is developed. The approach is based on preconditioning each layer with iterative solutions at a lower layer, while the accuracy is changed from the top layer to the bottom layer. As opposed to the conventionally used algebraic preconditioners, the multilayer scheme: 1) does not requir...
Citation Formats
M. AKBAS, L. Alatan, and Ö. S. Ergül, “Accuracy and efficiency improvements in iterative hybridization of the method of moments MoM and physical optics PO,” presented at the 10th European Conference on Antennas and Propagation (EuCAP), Davos, SWITZERLAND, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39880.