Hybridizing physical optics with MLFMA for efficient scattering computations of three-dimensional complex targets

Download
2009-07-23
Manyas, Alp
Ergül, Özgür Salih
Gürel, Levent
The multilevel fast multipole algorithm (MLFMA) provides accurate and efficient solutions of electromagnetic scattering problems involving large and complicated structures. On the other hand, whenever applicable, accelerations provided by approximation techniques can be useful to further improve the efficiency of solutions. In this paper, we present a hybrid technique, which combines the physical-optics (PO) method and MLFMA for efficient scattering computations of three-dimensional objects. We show that, with a careful choice of MLFMA and PO regions on the structure, the number of unknowns can be reduced and solutions can be accelerated significantly, without sacrificing the accuracy. The proposed hybrid technique is easy to implement by modifying existing MLFMA codes.

Suggestions

Novel SIE formulations for accurate and stable analysis of near-zero-index materials
KARAOSMANOGLU, BARISCAN; OZMU, UTKU; Ergül, Özgür Salih (2019-07-01)
© 2019 IEEE.We present surface-integral-equation formulations for accurate and stable solutions of electromagnetic problems involving near-zero-index materials with arbitrarily small permittivity and/or permeability values. The formulations are developed for conventional discretizations, while they can be implemented by using interaction routines of existing solvers. Initial results on canonical objects clearly demonstrate the superiority of the developed formulations in comparison to the conventional ones.
Fast and accurate analysis of optical metamaterials using surface integral equations and the parallel multilevel fast multipole algorithm
Ergül, Özgür Salih (2013-09-13)
We present fast and accurate simulations of optical metamaterials using surface integral equations and the multilevel fast multipole algorithm (MLFMA). Problems are formulated with the electric and magnetic current combined-field integral equation and solved iteratively with MLFMA, which is parallelized using the hierarchical strategy on distributed-memory architectures. Realistic metamaterials involving dielectric, perfectly conducting, and plasmonic regions of finite extents are solved rigorously with the...
Parallel-MLFMA Solutions of Large-Scale Problems Involving Composite Objects
Ergül, Özgür Salih (2012-07-14)
We present a parallel implementation of the multilevel fast multipole algorithm (MLFMA) for fast and accurate solutions of large-scale electromagnetics problems involving composite objects with dielectric and metallic parts. Problems are formulated with the electric and magnetic current combined-field integral equation (JMCFIE) and solved iteratively with MLFMA on distributed-memory architectures. Numerical examples involving canonical and complicated objects, such as optical metamaterials, are presented to...
PO-MLFMA hybrid technique for the solution of electromagnetic scattering problems involving complex targets
Gürel, L.; Manyas, A.; Ergül, Özgür Salih (2007-11-16)
The multilevel fast multipole algorithm (MLFMA) is a powerful tool for efficient and accurate solutions of electromagnetic scattering problems involving large and complicated structures. On the other hand, it is still desirable to increase the efficiency of the solutions further by combining the MLFMA implementations with the high- frequency techniques such as the physical optics (PO). In this paper, we present our efforts in order to reduce the computational cost of the MLFMA solutions by introducing PO cu...
PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR COMPLEX PLASMONIC METAMATERIAL STRUCTURES
Ergül, Özgür Salih (2013-11-09)
A parallel implementation of the multilevel fast multipole algorithm (MLFMA) is developed for fast and accurate solutions of electromagnetics problems involving complex plasmonic metamaterial structures. Composite objects that consist of multiple penetrable regions, such as dielectric, lossy, and plasmonic parts, are formulated rigorously with surface integral equations and solved iteratively via MLFMA. Using the hierarchical strategy for the parallelization, the developed implementation is capable of simul...
Citation Formats
A. Manyas, Ö. S. Ergül, and L. Gürel, “Hybridizing physical optics with MLFMA for efficient scattering computations of three-dimensional complex targets,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39902.