Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effects of micro-nano titania contents and maleic anhydride compatibilization on the mechanical performance of polylactide
Date
2020-02-01
Author
CAN, ULAŞ
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
285
views
0
downloads
Cite This
The first aim of this study was to compare influences of various contents of the micro- (200 nm) and nano (50 nm)-sized titania (TiO2) particles especially on the mechanical performance of the polylactide (PLA) biopolymer. Micro- and nano-composites were prepared by twin-screw extruder melt mixing, while the specimens were shaped by compression molding. Scanning electron microscope analyses and mechanical tests revealed that due to the most efficient uniform distribution in the matrix, the best improvements in the strength, elastic modulus, and fracture toughness values could be obtained either by using 5 wt% micro-TiO2 or by only 2 wt% nano-TiO2 particles. The second purpose of this study was to investigate influences of using maleic anhydride (MA)-grafted copolymer (PLA-g-MA) compatibilization on the performance of one nanocomposite composition. Due to the improved chemical interfacial adhesion, use of PLA-g-MA compatibilization for the specimen of PLA/2 wt% n-TiO2 composition resulted in the highest improvements in the mechanical performance of neat PLA. The improvements were 14% in tensile strength, 20% in flexural modulus, and as much as 67% in fracture toughness. Thermal behavior of all specimens was also observed by differential scanning calorimetry and thermogravimetric analyses.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/40143
Journal
POLYMER COMPOSITES
DOI
https://doi.org/10.1002/pc.25391
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Effects of Halloysite Nanotubes on the Performance of Plasticized Poly(lactic acid)-Based Composites
Erpek, Canan Esma Yeniova; ÖZKOÇ, GÜRALP; Yılmazer, Ülkü (Wiley, 2016-11-01)
The objective of this study is processing and characterization of Halloysite nanotube (HNT)/poly(lactic acid) (PLA) nanocomposites. As HNT filler, a domestic source was used (ESAN HNT). The results obtained from this HNT were compared with a well-known reference HNT (Nanoclay HNT). To achieve the desired physical properties and clay dispersion, composites were compounded via direct melt mixing in a laboratory twin-screw compounder. However, the constituents were observed to be incompatible without a compati...
Influences of liquid elastomer additive on the behavior of short glass fiber reinforced epoxy
Arikan, A; Kaynak, Cevdet; Tincer, T (Wiley, 2002-10-01)
In this study, improvements in mechanical and thermal behavior of short glass fiber (GF) reinforced diglycidyl ether of bisphenol-A (DGEBA) based epoxy with hydroxyl terminated polybutadiene (HTPB) modification have been studied. A silane coupling agent (SCA) with a rubber reactive group was also used to improve the interfacial adhesion between glass fibers and an epoxy matrix. 10, 20, and 30 wt% GF reinforced composite specimens were prepared with and without silane coupling agent treatment of fibers and a...
Influence of Zinc Oxide on Thermoplastic Elastomer-Based Composites: Synthesis, Processing, Structural, and Thermal Characterization
ÇELEBİ, HANDE; Bayram, Göknur; DOĞAN, AYDIN (Wiley, 2016-08-01)
It was aimed to investigate how thermal conductivity and stability properties of synthesized thermoplastic elastomers were influenced by zinc oxide (ZnO) additives which differed in size and surface treatment. ZnO particles were prepared by the homogeneous precipitation method by mixing aqueous solutions of hexamethylenetetramine (HMT) and zinc nitrate. The obtained particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Poly(v...
Influences of aminosilanization of halloysite nanotubes on the mechanical properties of polyamide-6 nanocomposites
Erdogan, Ali Riza; Kaygusuz, Ilker; Kaynak, Cevdet (Wiley, 2014-07-01)
The main purpose of this study was to explore effects of silanization of halloysite nanotubes (HNT) on the mechanical properties of polyamide 6 by using aminopropyltriethoxysilane. Effects of two silanization parameters; initial silane concentration and pH of reaction solution were also investigated. Nanocomposites were compounded via melt mixing method in a twin-screw extruder, while specimens were shaped by injection molding. Formation of aminosilane molecules on the edges and defected surfaces of HNTs we...
Influences of three different ethylene copolymers on the toughness and other properties of polylactide
MEYVA, YELDA; Kaynak, Cevdet (Informa UK Limited, 2016-01-01)
The aim of this study was to investigate influences of three different ethylene copolymers on the toughness and other properties of very brittle biopolymer PLA (polylactide). For this aim, PLA was melt blended by twin-screw extruder with various amounts of ethylene vinyl acetate (EVA), ethylene-methyl-acrylate (EMA) and ethylene-n-butyl acrylate-glycidyl-methacrylate (EBA-GMA). SEM and DSC analyses indicated that these ethylene copolymers were thermodynamically immiscible with phase separation in the form o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. CAN and C. Kaynak, “Effects of micro-nano titania contents and maleic anhydride compatibilization on the mechanical performance of polylactide,”
POLYMER COMPOSITES
, pp. 600–613, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40143.