Investigation of gas hydrate potential of the Black Sea and modelling of gas production from a hypothetical Class 1 methane hydrate reservoir in the Black Sea conditions

2016-02-01
Merey, Sukru
Sınayuç, Çağlar
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4 similar to 80-99.9%) source. In this study, by using the literature seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, it was estimated that up to 71.8 (median) standard trillion cubic meters (tcm) of CH4 can be available in the Black Sea. Due to biogenic and thermogenic gas potential of the Black Sea, the composition of natural gas may also include ethane (C2H6), propane (C3H8) and other impurities. This is an indication of 51 and sII types of hydrate potential in the Black Sea. Moreover, according to the seismic data, single and multiple bottom-simulating reflector (BSR) lines were observed in the literature. Therefore, there is a high potential of Class 1 hydrates (stable hydrate layer and an underlying free gas zone) in the Black Sea. In this study by using HydrateResSim numerical simulator, gas production potentials from a hypothetical Class 1 hydrate reservoir in the Black Sea conditions by depressurization (at different production pressures) and depressurization combined with wellbore heating were simulated. When the depressurization (production) pressure is lower, much more gas is produced but until certain value. If the depressurization pressure is very low, there is a risk of hydrate reformation and ice formation along the wellbore and/or inside the reservoir. Moreover, it was shown that wellbore heating might be necessary in order to avoid any hydrate reformation along the wellbore during the production. The effect of intrinsic permeability on gas production was also investigated. It was observed that until 400 mD, there is no important effect of intrinsic permeability on gas production but below 400 mD, the gas production is quite low because of very low effective permeability with 65% hydrate saturation.
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING

Suggestions

Experimental set-up design for gas production from the Black Sea gas hydrate reservoirs
Merey, Sukru; Sınayuç, Çağlar (2016-07-01)
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4 similar to 80-99.9%) source. In this study, by using the literature seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method ...
The effect of gas production from deeper conventional gas reservoirs on shallower gas hydrate layer stability: A case study in the conditions of the Sakarya gas field, Western Black Sea
Aydın, Hakkı; Merey, Şükrü (Elsevier BV, 2021-6)
Gas hydrate deposits are generally found in the shallow deepwater regions where continuous permafrost exists. The presence of water, methane and thermodynamic conditions (low temperature and high pressure) is critical for gas hydrate accumulation. Disturbing thermodynamic conditions such as depressurizing and thermal treatment are the primary processes for gas hydrate dissociation. In this study, we investigate the stability of a shallow depth gas hydrate layer in the conditions of conventional gas producti...
Numerical simulations for short-term depressurization production test of two gas hydrate sections in the Black Sea
MEREY, ŞÜKRÜ; Sınayuç, Çağlar (2017-08-01)
Gas hydrates are considered as a promising energy source and the Black Sea has a high potential of gas hydrates. The Danube Delta of the Black Sea is the most well-known prospect in the Black Sea after many geological and geophysical studies such as bottom-simulation reflectors (BSR) and electromagnetic surveys. In this study, gas production simulations from two gas hydrate layers (6 m thick hydrate layer at 60 mbsf and 30 m-thick hydrate layer at 140 mbsf above BSR at 350 mbsf) at the same locations with a...
Feasibility Study of a Grid Connected Hybrid PV-Wind Power Plant in Gwanda, Zimbabwe
Samu, Remember; Fahrioglu, Murat; Taylan, Onur (2016-10-14)
The depletion of fossil fuel resources on worldwide basis has necessitated an urgent search for alternative energy sources to meet up the present day demands. Energy demand is growing in developing nations which makes a hybrid power system, consisting of a hybrid Solar Photovoltaic together with wind energy to be considered one of the best alternatives in renewable energy. These sources of energy can partially or fully meet Gwanda's demand with little or no disturbance on the country's stability. The object...
Investigation of Sea Surface Temperature (SST) Anomalies over Cyprus Area
Georgiou, Andreas; Akcit, Nuhcan (2016-04-08)
The temperature of the sea surface has been identified as an important parameter of the natural environment, governing processes that occur in the upper ocean. This paper focuses on the analysis of the Sea Surface Temperature (SST) anomalies at the greater area of Cyprus. For that, SST data derived from MODerate-resolution Imaging Spectroradiometer (MODIS) instrument on board both Aqua and Terra sun synchronous satellites were used. A four year period was chosen as a first approach to address and describe t...
Citation Formats
S. Merey and Ç. Sınayuç, “Investigation of gas hydrate potential of the Black Sea and modelling of gas production from a hypothetical Class 1 methane hydrate reservoir in the Black Sea conditions,” JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, pp. 66–79, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40165.