Experimental set-up design for gas production from the Black Sea gas hydrate reservoirs

2016-07-01
Merey, Sukru
Sınayuç, Çağlar
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4 similar to 80-99.9%) source. In this study, by using the literature seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. It was proposed that CO2/N-2 injection as a production method from the potential Black Sea gas hydrates might not be favorable. Experimental set-up (high pressure cell, gas flow meter, water-gas separatof, mass balance, pressure transducers and thermocouples) for gas production from the Black gas hydrates by using depressurization method was designed according to the results of HydrateResSim numerical simulator. It was shown that cylindrical high pressure cell (METU Cell) with 30 cm inner length and 30 cm inner diameter with a volume 21.64 L in this study might reflect flow controlled conditions as in the real gas hydrate reservoirs. Moreover, 100 mesh portable separator in METU cell might be very useful to mimic Class 1 hydrate reservoirs and horizontal wells in gas hydrate reservoirs experimentally.
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING

Suggestions

Investigation of gas hydrate potential of the Black Sea and modelling of gas production from a hypothetical Class 1 methane hydrate reservoir in the Black Sea conditions
Merey, Sukru; Sınayuç, Çağlar (2016-02-01)
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4 similar to 80-99.9%) source. In this study, by using the literature seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, it was estimated that up to 71.8 (...
The effect of gas production from deeper conventional gas reservoirs on shallower gas hydrate layer stability: A case study in the conditions of the Sakarya gas field, Western Black Sea
Aydın, Hakkı; Merey, Şükrü (Elsevier BV, 2021-6)
Gas hydrate deposits are generally found in the shallow deepwater regions where continuous permafrost exists. The presence of water, methane and thermodynamic conditions (low temperature and high pressure) is critical for gas hydrate accumulation. Disturbing thermodynamic conditions such as depressurizing and thermal treatment are the primary processes for gas hydrate dissociation. In this study, we investigate the stability of a shallow depth gas hydrate layer in the conditions of conventional gas producti...
Numerical simulations for short-term depressurization production test of two gas hydrate sections in the Black Sea
MEREY, ŞÜKRÜ; Sınayuç, Çağlar (2017-08-01)
Gas hydrates are considered as a promising energy source and the Black Sea has a high potential of gas hydrates. The Danube Delta of the Black Sea is the most well-known prospect in the Black Sea after many geological and geophysical studies such as bottom-simulation reflectors (BSR) and electromagnetic surveys. In this study, gas production simulations from two gas hydrate layers (6 m thick hydrate layer at 60 mbsf and 30 m-thick hydrate layer at 140 mbsf above BSR at 350 mbsf) at the same locations with a...
Experimental investigation of carbon dioxide injection effects on methane-propane-carbon dioxide mixture hydrates
Abbasov, Abbas; Merey, Sukru; Parlaktuna, Mahmut (2016-08-01)
In this research, first, hydrate with high saturation in porous media (sand sediments) was formed in fully filled high pressure cell by using a mixture of the following gases at 4 degrees C: methane (CH4), propane (C3H8) and carbon dioxide (CO2). The feed mole percent of the gases used was selected as follows: CH4 (95%), C3H8 (3%), CO2 (2%). This selection was made in order to form natural gas hydrate of thermogenic origin (sII type hydrate). Thereafter, CO2 injection into the high saturation hydrate media ...
Feasibility Study of a Grid Connected Hybrid PV-Wind Power Plant in Gwanda, Zimbabwe
Samu, Remember; Fahrioglu, Murat; Taylan, Onur (2016-10-14)
The depletion of fossil fuel resources on worldwide basis has necessitated an urgent search for alternative energy sources to meet up the present day demands. Energy demand is growing in developing nations which makes a hybrid power system, consisting of a hybrid Solar Photovoltaic together with wind energy to be considered one of the best alternatives in renewable energy. These sources of energy can partially or fully meet Gwanda's demand with little or no disturbance on the country's stability. The object...
Citation Formats
S. Merey and Ç. Sınayuç, “Experimental set-up design for gas production from the Black Sea gas hydrate reservoirs,” JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, pp. 162–185, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42916.