Taguchi Design of Internal Stress and Friction Measurements during Electrodeposition

Download
2017-01-01
SARALOĞLU GÜLER, EBRU
Karakaya, İshak
The electroplating method is a promising alternative to produce composite plating by using dispersed fine particles in the metal plating bath. The process can be either called electro-deposition or composite deposition. The particles are trapped in the deposit during the process. Internal stress is a common problem in plated deposits that affect the performance of the coatings and may even result in adhesion problems. Hence, the amount and type (compressive or tensile) of the internal stress must be controlled. MoS2 particle – nickel coatings can be referred as self-lubricating coatings that satisfy the demand for decreased friction in severe applications. The internal stress during MoS2 particle – nickel electro-deposition was measured by deposit stress analyzer. The effects of electroplating parameters that are MoS2 particle concentration, temperature and coating thickness on the internal stress values were investigated by Taguchi design. It is found that increasing MoS2 particle concentration and coating thickness led to decrease in the internal stress developed during MoS2 -nickel composite coatings. Interaction effects of these parameters were also revealed.
Journal of Material Science Engineering

Suggestions

EFFECT OF ELECTROPLATING PARAMETERS ON "HER" CURRENT DENSITY IN Ni-MoS2 COMPOSITE PLATING
Guler, Ebru Saraloglu; Karakaya, İshak; KONCA, ERKAN (2012-03-15)
Nickel composites with co-deposited insoluble, solid lubricant particles such as MoS2 have been reported to reduce friction. It is known that hydrogen evolution reaction (HER), competes with nickel deposition. The influence of the electroplating parameters and their interaction effects on the peak current density for HER were studied by fractional factorial design. The parameters and their ranges were; MoS2 concentration (0-30 g/l), temperature (30-50 degrees C), pH (2-4) and surfactants (0-1 g/l). Electrod...
Preparation of porous Ca-10(PO4)(6)(OH)(2) and beta-Ca-3(PO4)(2) bioceramics
Engin, NO; Tas, AC (2000-07-01)
Submicrometer-sized, pure calcium hydroxyapatite (HA, (Ca-10(PO4)(6)(OH)(2))) and eta-tricalcium phosphate (beta-TCP, Ca-3(PO4)(2)) bioceramic powders, that have been synthesized via chemical precipitation techniques, were used in the preparation of aqueous slurries that contained methyl cellulose to manufacture porous (70%-95% porosity) HA or beta-TCP ceramics. The pore sizes in HA bioceramics of this study were 200-400 mu m, whereas those of beta-TCP bioceramics were 100-300 mu m. The pore morphology and ...
Production and development of aluminide coatings by chemical vapor deposition on nickel based superalloys for turbine engine applications
Ertürk, Umutcan; İmer, Muhsine Bilge; Department of Metallurgical and Materials Engineering (2017)
Diffusion coatings including aluminide coatings are utilized to improve the high temperature oxidation and corrosion resistance of turbine blades. Through the advancement in the aluminizing methods, higher purity and more homogeneously distributed coatings have been realized. The chemical vapor deposition (CVD) is the most advanced technique utilized for aluminizing process. The versatility of CVD provides a large possibility to control process variables such as temperature, pressure, gas flows and ratios, ...
Ag nanostructures on a poly(3,4-ethylenedioxythiophene) film prepared with electrochemical route: A controllable roughened SERS substrate with high repeatability and stability
Dogan, Uzeyir; KAYA, MURAT; CİHANER, ATİLLA; Volkan, Mürvet (2012-12-15)
A simple, reliable and reproducible one-step electrochemical method for the preparation of surface-enhanced Raman-active polymer-mediated silver nanoparticles (Ag NPs) on planar indium tin oxide (ITO) coated glass substrates was reported. Poly(3,4-ethylenedioxythiophene) (PEDOT) film was used as a support material for dispersing nanostructured silver nanostructures on the surface homogeneously, since 3,4-ethylenedioxythiophene (EDOT) monomer polymerizes regioregularly. The optical properties and morphologie...
Kinetic investigation of chemical vapor deposition of B4C on tungsten substrate
Karaman, Mustafa; Sezgi, Naime Aslı; Doğu, Timur; Ozbelge, H. Onder (2006-12-01)
Production of beta-rhombohedral boron carbide (B4C) on a tungsten substrate by the chemical vapor deposition from a BCl3-H-2-CH4 gas mixture was achieved. An impinging-jet reactor was used to minimize the mass-transfer limitations on the reaction kinetics, which made a detailed kinetic investigation possible. Results of the XRD and XPS analyses showed that the solid product formed on the substrate is a rhombohedral B4C phase. Both dichloroborane and boron carbide formation rates were found to increase with ...
Citation Formats
E. SARALOĞLU GÜLER and İ. Karakaya, “Taguchi Design of Internal Stress and Friction Measurements during Electrodeposition,” Journal of Material Science Engineering, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40317.