Taguchi Design of Internal Stress and Friction Measurements during Electrodeposition

Karakaya, İshak
The electroplating method is a promising alternative to produce composite plating by using dispersed fine particles in the metal plating bath. The process can be either called electro-deposition or composite deposition. The particles are trapped in the deposit during the process. Internal stress is a common problem in plated deposits that affect the performance of the coatings and may even result in adhesion problems. Hence, the amount and type (compressive or tensile) of the internal stress must be controlled. MoS2 particle – nickel coatings can be referred as self-lubricating coatings that satisfy the demand for decreased friction in severe applications. The internal stress during MoS2 particle – nickel electro-deposition was measured by deposit stress analyzer. The effects of electroplating parameters that are MoS2 particle concentration, temperature and coating thickness on the internal stress values were investigated by Taguchi design. It is found that increasing MoS2 particle concentration and coating thickness led to decrease in the internal stress developed during MoS2 -nickel composite coatings. Interaction effects of these parameters were also revealed.
Journal of Material Science Engineering


Guler, Ebru Saraloglu; Karakaya, İshak; KONCA, ERKAN (2012-03-15)
Nickel composites with co-deposited insoluble, solid lubricant particles such as MoS2 have been reported to reduce friction. It is known that hydrogen evolution reaction (HER), competes with nickel deposition. The influence of the electroplating parameters and their interaction effects on the peak current density for HER were studied by fractional factorial design. The parameters and their ranges were; MoS2 concentration (0-30 g/l), temperature (30-50 degrees C), pH (2-4) and surfactants (0-1 g/l). Electrod...
Finite Element Modelling of TBC Failure Mechanisms by Using XFEM and CZM
Bostanci, Safa Mesut; Gürses, Ercan; Çöker, Demirkan (Elsevier BV; 2019-01-01)
Thermal Barrier Coatings have been widely used in modern turbine engines to protect the nickel based metal substrate from the high temperature service conditions, 1600-1800 K. In this study, failure mechanisms of typical Air Plasma Sprayed Thermal Barrier Coatings (TBC) used in after-burner structures composed of three major layers: Inconel 718 substrate, NiCrAlY based metallic bond coat (BC) and Yttria Stabilized Zirconia (YSZ) based ceramic top coat (TC) are investigated. Investigation of the cracking mec...
Preparation of porous Ca-10(PO4)(6)(OH)(2) and beta-Ca-3(PO4)(2) bioceramics
Engin, NO; Tas, AC (2000-07-01)
Submicrometer-sized, pure calcium hydroxyapatite (HA, (Ca-10(PO4)(6)(OH)(2))) and eta-tricalcium phosphate (beta-TCP, Ca-3(PO4)(2)) bioceramic powders, that have been synthesized via chemical precipitation techniques, were used in the preparation of aqueous slurries that contained methyl cellulose to manufacture porous (70%-95% porosity) HA or beta-TCP ceramics. The pore sizes in HA bioceramics of this study were 200-400 mu m, whereas those of beta-TCP bioceramics were 100-300 mu m. The pore morphology and ...
Mechanism Studies on CVD of Boron Carbide from a Gas Mixture of BCl3, CH4, and H-2 in a Dual Impinging-jet Reactor
Karaman, Mustafa; Sezgi, Naime Aslı; Doğu, Timur; Ozbelge, Hilmi Onder (2009-03-01)
Nearly pure boron carbide free from impurities was produced on a tungsten substrate in a dual impinging-jet chemical vapor deposition reactor from a BCl3, CH4, and H-2 mixture. The Fourier Tran form Infrared (FTIR) analysis proved the formation Of reaction intermediate BHCl2, which is proposed to occur mainly in the gaseous boundary layer next to the substrate surface. Among a large number of reaction mechanisms proposed only the ones considering the molecular adsorption of boron carbide on the substrate su...
Kinetic investigation of chemical vapor deposition of B4C on tungsten substrate
Karaman, Mustafa; Sezgi, Naime Aslı; Doğu, Timur; Ozbelge, H. Onder (2006-12-01)
Production of beta-rhombohedral boron carbide (B4C) on a tungsten substrate by the chemical vapor deposition from a BCl3-H-2-CH4 gas mixture was achieved. An impinging-jet reactor was used to minimize the mass-transfer limitations on the reaction kinetics, which made a detailed kinetic investigation possible. Results of the XRD and XPS analyses showed that the solid product formed on the substrate is a rhombohedral B4C phase. Both dichloroborane and boron carbide formation rates were found to increase with ...
Citation Formats
E. SARALOĞLU GÜLER and İ. Karakaya, “Taguchi Design of Internal Stress and Friction Measurements during Electrodeposition,” Journal of Material Science Engineering, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40317.