Physical Characterization of Inclusion Complexes of Triphenyl Phosphate and Cyclodextrins in Solution.

Zhang, N
Zane, CP
Chen, Y
Yıldırım, Erol
Hinks, D
Tonelli, AE
Vinueza, NR
Pasquinelli, MA
The goal of this work is to provide physical insights into the formation and stability of inclusion complexes (ICs) in aqueous solution between cyclodextrins (CDs) and a common flame retardant, triphenyl phosphate (TPP). Quantum chemistry calculations reveal the possible energetically favorable geometries of TPP in their 1:1 IC form with α-, β-, and γ-CDs as well as their associated complexation, conformational, and interaction energies. High-resolution mass spectrometry (MS) and tandem MS were used with electrospray ionization to study the soluble ICs formed between TPP and CDs. Successful formation of TPP ICs with both β- and γ-CD in solution was detected in the ratio of 1:1 using high-resolution MS in the positive ion mode. Collision-induced dissociation confirmed the formation of TPP ICs with β- and γ-CDs by generating two product ions, TPP and β- or γ-CD, in both cases. Although quantum chemistry calculations suggest that IC formation with α-CD is energetically possible, an IC with α-CD is not observed in aqueous solution using MS, which aligns with what we also previously observed in the solid state. Since TPP forms stable ICs with β- and γ-CDs both in the solid state and in solution suggests that complexation could be a safer alternative than applying TPP directly to a substrate. In addition, complexation with CDs in solution also opens up new processing methods to create flame-retardant fabrics and foams with TPP.

Citation Formats
N. Zhang et al., “Physical Characterization of Inclusion Complexes of Triphenyl Phosphate and Cyclodextrins in Solution.,” The journal of physical chemistry. B, vol. 124, pp. 404–412, 2020, Accessed: 00, 2020. [Online]. Available: