# Hydrodynamic Modeling of Dam-Reservoir Response during Earthquakes

2011-08-03
A computational model is developed to analyze the hydrodynamic behavior of dam reservoirs during earthquakes. The mathematical model is based on the solution of two-dimensional (2D) Navier-Stokes equations in a vertical, semi-infinite domain truncated by a far-end boundary condition. A depth integrated continuity equation is used to track the deforming free-surface and ensure global mass conservation. A combination of Sommerfeld nonreflecting boundary and dissipation zone methods is implemented at the far end of the reservoir to prevent any back-reflections of pressure and free-surface waves. Nondimensionalized equations are used to compare contributions of each type of force to the development of the hydrodynamic pressure field and to the maximum run-up of free-surface waves on the dam face. Sinusoidal ground accelerations are applied to an idealized dam-reservoir system to analyze the system response. It is observed that the acoustic wave equation solution gives satisfactory results for the pressure field unless the contributions from the free-surface waves become significant at low reservoir depths. The surface wave run-up on the dam face is found to depend on the ground velocity, oscillation period, and the water depth. On the basis of numerical experiments, an expression for the wave run-up to predict conditions of overtopping from probable earthquake characteristics is proposed.
Journal of Engineering Mechanics

# Suggestions

 Numerical Simulation and Formulation of Wave Run-Up on Dam Face due to Ground Oscillations Using Major Earthquake Acceleration Records DEMİREL, ENDER; Aydın, İsmail (American Society of Civil Engineers (ASCE), 2016-06-01) A previously developed computational model is used for wave run-up analysis in a generic two-dimensional reservoir subjected to major earthquake acceleration records. The model is based on numerical solution of the Navier-Stokes equations and pressure equation considering compressibility effects. An existing model has been revised by the volume of fluid (VOF) method with piecewise linear interface calculation (PLIC) to be able to compute violent wave motion in the reservoir and to predict the maximum wave r...
 Parameter sensitivity analysis of a nonlinear least-squares optimization-based anelastic full waveform inversion method Askan Gündoğan, Ayşegül; Bielak, Jacobo; Ghattas, Omar (Elsevier BV, 2010-07-01) In a recent article, we described a seismic inversion method for determining the crustal velocity and attenuation of basins in earthquake-prone regions. We formulated the problem as a constrained nonlinear least-squares optimization problem in which the constraints are the equations that describe the forward wave propagation. Here, we conduct a parametric study to investigate the influence of parameters such as the form of the regularization function, receiver density, preconditioning, noise level of the da...
 Global volume conservation in unsteady free surface flows with energy absorbing far-end boundaries Demirel, Ender; Aydın, İsmail (Wiley, 2010-10-30) A wave absorption filter for the far-end boundary of semi-infinite large reservoirs is developed for numerical simulation of unsteady free surface flows. Mathematical model is based on finite volume solution of the Navier-Stokes equations and depth-integrated continuity equation to track the free surface. The Sommerfeld boundary condition is applied at the far-end of the truncated computational domain. A dissipation zone is formed by applying artificial pressure on water surface to dissipate the kinetic ene...
 Single- and double-helix vortex breakdown as two dominant global modes in turbulent swirling jet flow Vanierschot, Maarten; Mueller, Jens S.; Sieber, Moritz; Perçin, Mustafa; van Oudheusden, Bas W.; Oberleithner, Kilian (Cambridge University Press (CUP), 2020-01-25) In this paper, we study the shape and dynamics of helical coherent structures found in the flow field of an annular swirling jet undergoing vortex breakdown. The flow field is studied by means of time-resolved tomographic particle image velocimetry measurements. The obtained flow fields are analysed using both classic and spectral proper orthogonal decomposition. Despite the simple geometrical set-up of the annular jet, the flow field is very complex. Two distinct large-scale helical flow structures are ide...
 Implementation of physical boundary conditions into computational domain in modelling of oscillatory bottom boundary layers Tiğrek, Şahnaz; Yılmaz, Bilgi (Wiley, 2010-11-30) This paper discusses the importance of realistic implementation of the physical boundary conditions into computational domain for the simulation of the oscillatory turbulent boundary layer flow over smooth and rough flat beds. A mathematical model composed of the Reynolds averaged Navier-Stokes equation, turbulent kinetic energy (k) and dissipation rate of the turbulent kinetic energy (epsilon) has been developed. Control-volume approach is used to discretize the governing equations to facilitate the numeri...
Citation Formats
İ. Aydın, “Hydrodynamic Modeling of Dam-Reservoir Response during Earthquakes,” Journal of Engineering Mechanics, pp. 164–174, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40415. 