Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Parameter sensitivity analysis of a nonlinear least-squares optimization-based anelastic full waveform inversion method
Date
2010-07-01
Author
Askan Gündoğan, Ayşegül
Bielak, Jacobo
Ghattas, Omar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
206
views
0
downloads
Cite This
In a recent article, we described a seismic inversion method for determining the crustal velocity and attenuation of basins in earthquake-prone regions. We formulated the problem as a constrained nonlinear least-squares optimization problem in which the constraints are the equations that describe the forward wave propagation. Here, we conduct a parametric study to investigate the influence of parameters such as the form of the regularization function, receiver density, preconditioning, noise level of the data, and the multilevel continuation technique on the cost and quality of the inversion. We use the same 2D Los Angeles example as in our earlier study. (C) 2010 Academic des sciences. Published by Elsevier Masson SAS. All rights reserved.
Subject Keywords
General Materials Science
,
Mechanics of Materials
URI
https://hdl.handle.net/11511/46201
Journal
COMPTES RENDUS MECANIQUE
DOI
https://doi.org/10.1016/j.crme.2010.07.002
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Hydrodynamic Modeling of Dam-Reservoir Response during Earthquakes
Aydın, İsmail (American Society of Civil Engineers (ASCE), 2011-08-03)
A computational model is developed to analyze the hydrodynamic behavior of dam reservoirs during earthquakes. The mathematical model is based on the solution of two-dimensional (2D) Navier-Stokes equations in a vertical, semi-infinite domain truncated by a far-end boundary condition. A depth integrated continuity equation is used to track the deforming free-surface and ensure global mass conservation. A combination of Sommerfeld nonreflecting boundary and dissipation zone methods is implemented at the far e...
Flow transitions and flow localization in large-strain deformation of magnesium alloy
Sagapuram, Dinakar; Efe, Mert; Trumble, Kevin P.; Chandrasekar, Srinivasan (Elsevier BV, 2016-04-06)
Understanding transitions from homogeneous to localized flow, and mechanisms underlying flow localization, is of paramount importance for deformation processing of magnesium. In this study, a shear based deformation method is utilized for imposing large strains (similar to 1), under controllable strain rates (10-10(5)/s) and temperatures (80-300 degrees C), in order to examine flow patterns in a magnesium alloy. Based on microstructure characterization, deformation twinning is suggested to contribute to the...
Thermally stimulated currents in n-InS single crystals
Hasanlı, Nızamı; Yuksek, NS (Elsevier BV, 2003-03-24)
Thermally stimulated current measurements are carried out on as-grown n-InS single crystals in the temperature range of 10-125 K. Experimental evidence is found for four trapping centers present in InS. They are located at 20, 35, 60 and 130 meV. The trap parameters have been determined by various methods of analysis, and they agree well with each other.
Time domain Gauss-Newton seismic waveform inversion in elastic media
Sheen, Dong-Hoon; Tuncay, Kağan; Baag, Chang-Eob; Ortoleva, Peter J. (Oxford University Press (OUP), 2006-12-01)
We present a seismic waveform inversion methodology based on the Gauss-Newton method from pre-stack seismic data. The inversion employs a staggered-grid finite difference solution of the 2-D elastic wave equation in the time domain, allowing accurate simulation of all possible waves in elastic media. The partial derivatives for the Gauss-Newton method are obtained from the differential equation of the wave equation in terms of model parameters. The resulting wave equation and virtual sources from the recipr...
Silicene nanoribbons: Molecular-dynamics simulations
Ince, Alper; Erkoç, Şakir (Elsevier BV, 2011-01-01)
Structural properties of silicene nanoribbons have been investigated by performing classical molecular-dynamics simulations using atomistic many-body potential energy functions at low and room temperatures with finite and infinite lengths. It has been found that finite length models are more likely to form tubular structures at room temperature.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Askan Gündoğan, J. Bielak, and O. Ghattas, “Parameter sensitivity analysis of a nonlinear least-squares optimization-based anelastic full waveform inversion method,”
COMPTES RENDUS MECANIQUE
, pp. 364–376, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46201.