Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Global volume conservation in unsteady free surface flows with energy absorbing far-end boundaries
Date
2010-10-30
Author
Demirel, Ender
Aydın, İsmail
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
A wave absorption filter for the far-end boundary of semi-infinite large reservoirs is developed for numerical simulation of unsteady free surface flows. Mathematical model is based on finite volume solution of the Navier-Stokes equations and depth-integrated continuity equation to track the free surface. The Sommerfeld boundary condition is applied at the far-end of the truncated computational domain. A dissipation zone is formed by applying artificial pressure on water surface to dissipate the kinetic energy of the outgoing waves. The computational scheme is tested to verify the conservation of total fluid volume in the domain for long simulation durations. Combination of the Sommerfeld boundary and dissipation zone can effectively minimize reflections and prevent cumulative changes in total fluid volume in the domain. Solitary wave, nonlinear periodic waves and irregular waves are simulated to illustrate the numerical developments. Earthquake excited surface waves and nonlinear hydrodynamic pressures in a dam-reservoir are computed. Copyright (C) 2009 John Wiley & Sons, Ltd.
Subject Keywords
Mechanical Engineering
,
Mechanics of Materials
,
Applied Mathematics
,
Computational Mechanics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/44108
Journal
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
DOI
https://doi.org/10.1002/fld.2173
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Implementation of physical boundary conditions into computational domain in modelling of oscillatory bottom boundary layers
Tiğrek, Şahnaz; Yılmaz, Bilgi (Wiley, 2010-11-30)
This paper discusses the importance of realistic implementation of the physical boundary conditions into computational domain for the simulation of the oscillatory turbulent boundary layer flow over smooth and rough flat beds. A mathematical model composed of the Reynolds averaged Navier-Stokes equation, turbulent kinetic energy (k) and dissipation rate of the turbulent kinetic energy (epsilon) has been developed. Control-volume approach is used to discretize the governing equations to facilitate the numeri...
An implicit three-dimensional numerical model to simulate transport processes in coastal water bodies
Balas, L; Ozhan, E (Wiley, 2000-10-30)
A three-dimensional baroclinic numerical model has been developed to compute water levels and water particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier-Stokes equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salini...
Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme
Bozkaya, Canan; Tezer, Münevver (Wiley, 2006-06-20)
A numerical scheme which is a combination of the dual reciprocity boundary element method (DRBEM) and the differential quadrature method (DQM), is proposed for the solution of unsteady magnetohydro-dynamic (MHD) flow problem in a rectangular duct with insulating walls. The coupled MHD equations in velocity and induced magnetic field are transformed first into the decoupled time-dependent convection-diffusion-type equations. These equations are solved by using DRBEM which treats the time and the space deriva...
Hydrodynamic Modeling of Dam-Reservoir Response during Earthquakes
Aydın, İsmail (American Society of Civil Engineers (ASCE), 2011-08-03)
A computational model is developed to analyze the hydrodynamic behavior of dam reservoirs during earthquakes. The mathematical model is based on the solution of two-dimensional (2D) Navier-Stokes equations in a vertical, semi-infinite domain truncated by a far-end boundary condition. A depth integrated continuity equation is used to track the deforming free-surface and ensure global mass conservation. A combination of Sommerfeld nonreflecting boundary and dissipation zone methods is implemented at the far e...
FEM solution of natural convection flow in square enclosures under magnetic field
Turk, O.; Tezer, Münevver (Emerald, 2013-01-01)
Purpose - The purpose of the paper is to obtain finite element method (FEM) solution of steady, laminar, natural convection flow in inclined enclosures in the presence of an oblique magnetic field. The momentum equations include the magnetic effect, and the induced magnetic field due to the motion of the electrically conducting fluid is neglected. Quadratic triangular elements are used to ensure accurate approximation for second order derivatives of stream function appearing in the vorticity equation.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Demirel and İ. Aydın, “Global volume conservation in unsteady free surface flows with energy absorbing far-end boundaries,”
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
, pp. 689–708, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44108.