Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Effects of RTM mold temperature and vacuum on the mechanical properties of epoxy/glass fiber composite plates
Date
2008-08-01
Author
Kaynak, Cevdet
AKGÜL, Eralp
Isitman, Nihat Ali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
0
downloads
The purpose of this study is to investigate the effects of mold temperature, application of vacuum at resin exit ports, and initial resin temperature on the mechanical properties of epoxy matrix woven glass fiber reinforced composite specimens produced by resin transfer molding (RTM). For this purpose, six mold temperatures (25, 40, 60, 80, 100, and 120 degrees C), two initial resin temperatures (15 and 28 degrees C), and vacuum (0.03 bar) and without vacuum (similar to 1 bar) conditions are utilized. Specimens are characterized by ultrasonic C-scan inspection, mechanical tests (tensile, flexural, and impact), thermal analyses (ignition loss and TGA) and scanning electron microscopy. It is observed that mechanical properties of the specimens produced at a mold temperature of 60 degrees C with the application of vacuum and initial resin temperature of 28 degrees C proved to be the highest (e.g., 16, 26, and 43% higher tensile strength, flexural strength, and Charpy impact toughness, respectively, compared to the lowest values attained with mold temperatures other than 60 degrees C while other variables are kept constant). It has been shown that application of vacuum contributes to the final mechanical properties of the produced composites by lowering the percentage of 'voids'. In fact, without the application of vacuum, the deteriorations in mechanical properties are as high as 26% loss in Charpy impact toughness and 5% losses in tensile and flexural strength. Additionally, lowering the initial resin temperature is shown to alter mechanical properties (e.g., 14, 12, and 18% losses in tensile strength, flexural strength, and Charpy impact toughness, respectively, when the initial resin temperature is decreased from 28 to 15 degrees C).
Subject Keywords
Epoxy
,
Woven glass fibers
,
RTM
,
Mold temperature
,
Vacuum
,
Initial resin temperature
URI
https://hdl.handle.net/11511/40479
Journal
JOURNAL OF COMPOSITE MATERIALS
DOI
https://doi.org/10.1177/0021998308092204
Collections
Department of Metallurgical and Materials Engineering, Article