Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys
Date
2017-08-01
Author
Aydoğan Güngör, Eda
Anderoglu, O.
Sun, C.
Gigax, J. G.
Shao, L.
Garner, F. A.
Anderson, I. E.
Lewandowski, J. J.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
218
views
0
downloads
Cite This
In this research, innovative thermal spray deposition (Process I) and conventional hot extrusion processing (Process II) methods have been used to produce thin walled tubing (similar to 0.5 mm wall thickness) out of 14YWT, a nanostructured ferritic alloy. The effects of processing methods on the microstructure, mechanical properties and irradiation response have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and, micro- and nano-hardness techniques. It has been found that these two processes have a significant effect on the microstructure and mechanical properties of the as-fabricated 14YWT tubes. Even though both processing methods yield the formation of various size Y-Ti-O particles, the conventional hot extrusion method results in a microstructure with smaller, homogenously distributed nano-oxides (NOs, Y-Ti-O particles < 5 nm) with higher density. Therefore, Process II tubes exhibit twice the hardness of Process I tubes. It has also been found that these two tremendously different initial microstructures strongly affect irradiation response in these tubes under extremely high dose ion irradiations up to 1100 peak dpa at 450 degrees C. The finer, denser and homogenously distributed NOs in the Process II tube result in a reduction in swelling by two orders of magnitude. On the other hand, inhomogeneity of the initial microstructure in the Process I tube leads to large variations in both swelling and irradiation induced hardening. Moreover, hardening mechanisms before and after irradiation were measured and compared with detailed calculations. This study clearly indicates the crucial effect of initial microstructure on radiation response of 14YWT alloys. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
URI
https://hdl.handle.net/11511/69893
Journal
ACTA MATERIALIA
DOI
https://doi.org/10.1016/j.actamat.2017.05.053
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Effects of RTM mold temperature and vacuum on the mechanical properties of epoxy/glass fiber composite plates
Kaynak, Cevdet; Isitman, Nihat Ali (2008-08-01)
The purpose of this study is to investigate the effects of mold temperature, application of vacuum at resin exit ports, and initial resin temperature on the mechanical properties of epoxy matrix woven glass fiber reinforced composite specimens produced by resin transfer molding (RTM). For this purpose, six mold temperatures (25, 40, 60, 80, 100, and 120 degrees C), two initial resin temperatures (15 and 28 degrees C), and vacuum (0.03 bar) and without vacuum (similar to 1 bar) conditions are utilized. Speci...
Effect of resin and fiber on the abrasion, impact and pressure resistance of cylindrical composite structures
Kaya, Derya; Yılmazer, Ülkü; Department of Chemical Engineering (2011)
The aim of this study was to investigate the effects of resin and fiber on the abrasion, impact and internal pressure resistances of fiber reinforced plastic composite pipes produced by continuous filament winding method. For this study, pipe samples were produced with different combinations of resin type, fiber type, fiber amount and fiber length. All the samples were tested in accordance with the related ISO (International Organization for Standardization), DIN (German Standardization Institution) and BSI...
Effects of Graphene Transfer and Thermal Annealing on Anticorrosive Properties of Stainless Steel
Oh, Jeong Hyeon; Han, Sangmok; Kim, Tae-Yoon; PARK, JONGEE; Öztürk, Abdullah; Kim, Soo Young (2017-11-01)
Stainless steel (STS) films were annealed in a thermal quartz tube and covered with graphene to improve their anticorrosive properties. Graphene was synthesized via the chemical vapor deposition method and transferred onto the surface of the STS film by the layer-by-layer approach. The structure of the STS film changed from alpha-Fe to gamma-Fe after annealing at 700 C for 1 h, resulting in an increase of 82.72% in the inhibition efficiency. However, one-layer graphene acted as a conductive pathway and ther...
Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires
Ozdemir, Baris; Kulakci, Mustafa; Turan, Raşit; Ünalan, Hüsnü Emrah (IOP Publishing, 2011-04-15)
Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed ...
Effects of mold temperature and vacuum in resin transfer molding
Akgül, Eralp; Kaynak, Cevdet; Department of Metallurgical and Materials Engineering (2006)
The purpose of this study was to investigate the effects of mold temperature, initial resin temperature, and the vacuum, applied at resin exit ports, on the mechanical properties of epoxy matrix woven glasss fiber reinforced composite specimens produced by Resin Transfer Molding (RTM). For this purpose, six different mold temperatures (25º, 40º, 60º, 80º, 100º, and 120ºC), two initial resin temperatures (15º and 28ºC), and vacuum (0.03 bar) and without vacuum (~1 bar) conditions were used. Specimens were ch...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Aydoğan Güngör et al., “Effect of tube processing methods on microstructure, mechanical properties and irradiation response of 14YWT nanostructured ferritic alloys,”
ACTA MATERIALIA
, pp. 116–127, 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/69893.