Effects of mold temperature and vacuum in resin transfer molding

Download
2006
Akgül, Eralp
The purpose of this study was to investigate the effects of mold temperature, initial resin temperature, and the vacuum, applied at resin exit ports, on the mechanical properties of epoxy matrix woven glasss fiber reinforced composite specimens produced by Resin Transfer Molding (RTM). For this purpose, six different mold temperatures (25º, 40º, 60º, 80º, 100º, and 120ºC), two initial resin temperatures (15º and 28ºC), and vacuum (0.03 bar) and without vacuum (~1 bar) conditions were used. Specimens were characterized by using ultrasonic (C-Scan) inspection, mechanical tests (Tensile, Flexural, Impact), thermal analyses (Ignition Loss, TGA) and scanning electron microscopy (SEM). It was generally observed that mechanical properties of the specimens produced with a mold temperature of 60ºC were the best (e.g. 16%, 43%, and 26% higher tensile strength, Charpy impact toughness and flexural strength values, respectively). When vacuum was not applied, the percentage of “voids” increased leading to a decrease in mechanical properties such as 26% in Charpy impact toughness and 5% in tensile and flexural strength. Lower initial resin temperature also decreased mechanical properties (e.g. 14% in tensile strenght and 18% in Charpy impact toughness).

Suggestions

Effects of RTM mold temperature and vacuum on the mechanical properties of epoxy/glass fiber composite plates
Kaynak, Cevdet; Isitman, Nihat Ali (2008-08-01)
The purpose of this study is to investigate the effects of mold temperature, application of vacuum at resin exit ports, and initial resin temperature on the mechanical properties of epoxy matrix woven glass fiber reinforced composite specimens produced by resin transfer molding (RTM). For this purpose, six mold temperatures (25, 40, 60, 80, 100, and 120 degrees C), two initial resin temperatures (15 and 28 degrees C), and vacuum (0.03 bar) and without vacuum (similar to 1 bar) conditions are utilized. Speci...
Conductive coating materials
Çakar, İlknur; Bayram, Göknur; Department of Chemical Engineering (2006)
In this study, electrically conductive coating materials composed of epoxy resin and carbon black (CB) were prepared by applying two different mixing techniques (Grinding and Mechanical Mixing). The effect of carbon black addition, ultrasonication, mixing type and surface modification of carbon black on the morphologies, electrical and mechanical properties of the composites were investigated. According to test results, Grinding Method is much more efficient and for this method, percolation concentration wa...
Effects of nucleating agent and processing conditions on the mechanical, thermal, and optical properties of biaxially oriented polypropylene films
Yuksekkalayci, C; Yılmazer, Ülkü; Orbey, N (Wiley, 1999-07-01)
The effects of nucleating agent, temperature of crystallization, and degree of machine direction (MD) orientation on the mechanical, optical, and thermal properties of biaxially oriented polypropylene (BOPP) films were investigated. Addition of nucleating agent improved only the initial tear resistance in the MD; however, the other mechanical and optical properties did not change appreciably. Ln the set of experiments in which the crystallization temperature was increased, the degree of crystallinity also i...
Effects of injection pressure in resin transfer moulding (RTM) of woven carbon fibre/epoxy composites
Kaynak, Cevdet (SAGE Publications, 2006-01-01)
RTM (Resin Transfer Moulding) is a closed mould process in which matrix resin is injected into a mould filled with a fibre preform. There are many RTM process parameters influencing the quality of the final product. The objective of this work was to study resin injection pressure. For this purpose, an amine curing epoxy resin was injected, using a small laboratory size RTM machine, into a flat mould filled with woven carbon fibre layers. Five different resin injection pressure levels; 1, 2, 3, 4, and 5 atm ...
Preparation and characterizatton of fiber reinforced poly(ethylene terephtlate)
Altan, Cansu; Bayram, Göknur; Department of Chemical Engineering (2004)
Glass fiber reinforced poly(ethylene terephthalate), GF/PET has excellent potential for future structural applications of composite materials. PET as a semi-crystalline thermoplastic polyester has high wear resistance, low coefficient of friction, high flexural modulus and superior dimensional stability make it a versatile material for designing mechanical and electromechanical parts. Glass fibers are currently used as strength giving material in structural composites because of their high strength and high...
Citation Formats
E. Akgül, “Effects of mold temperature and vacuum in resin transfer molding,” M.S. - Master of Science, Middle East Technical University, 2006.