Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Germanium nanowire synthesis using solid precursors
Date
2014-04-15
Author
AKSOY, Burcu
Kalay, Yunus Eren
Ünalan, Hüsnü Emrah
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
181
views
0
downloads
Cite This
We report on the synthesis of single crystalline, high aspect ratio germanium (Ge) nanowires (NWs) by vapor transport method using three different solid powder precursors. Investigated precursors were either powder like germanium or powder mixtures like germanium dioxide with carbon and germanium iodide with germanium. As-grown NWs were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD) and X-Ray photoelectron spectroscopy (XPS) to obtain structural information. The effect of temperature and pressure on the diameter and morphology of the NWs were determined. Both pressure and temperature were found to increase the diameter of the NWs independent of precursor type. Growth direction of the NWs was found to be the same while clear differences in the morphology and surrounding oxide layer thickness were observed with different precursors. Oxide layer removal via hydrobromic acid treatment was also realized. Results provided in this paper allow the basis for optimizing the synthesis of Ge NWs using solid precursors.
Subject Keywords
Semiconducting germanium
,
Elemental solids
,
Chemical vapor deposition processes
,
Nanowires
URI
https://hdl.handle.net/11511/40601
Journal
JOURNAL OF CRYSTAL GROWTH
DOI
https://doi.org/10.1016/j.jcrysgro.2014.01.041
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Catalytic partial oxidation of propylene on metal surfaces by means of quantum chemical methods
Kızılkaya, Ali Can; Önal, Işık; Department of Chemical Engineering (2010)
Direct, gas phase propylene epoxidation reactions are carried out on model slabs representing Ru-Cu(111) bimetallic and Cu(111) metallic catalyst surfaces with periodic Density Functional Theory (DFT) calculations. Ru-Cu(111) surface is modelled as a Cu(111) monolayer totally covering the surface of Ru(0001) surface underneath. The catalytic activity is evaluated following the generally accepted oxametallacycle mechanism. It is shown that the Ru-Cu(111) surface has a lower energy barrier (0.48 eV) for the s...
Chemical Interactions of Nano Islandic Graphene Grown on Titanium Dioxide Substrates by Chemical Vapor Deposition
Karamat, S.; Khalique, U.; Usman, Arslan; Javaid, Asad; Oral, Ahmet (2022-03-01)
In this work, direct growth of graphene is carried out on TiO2 (110) substrates by chemical vapor deposition. For few device applications, it is convenient to grow graphene directly on the dielectric substrates rather than metal foil to minimize transfer and surface interface defects. Raman spectrum support graphene growth on TiO2 substrate by exhibiting D and G peaks. Graphene covered the whole TiO2 substrate with few areas where higher growth of carbon atoms occurs. The contrast of SEM images clearly show...
BHCl2 formation during chemical vapor deposition of boron in a dual-impinging jet reactor
Sezgi, Naime Aslı; Ozbelge, HO (1997-12-01)
Chemical vapor deposition (CVD) of boron from BCl3 and Hz was investigated in a dual-impinging jet reactor which was connected to an FT-IR spectrometer for on-line chemical analysis of the reactor outlet stream. Formation of the intermediate, BHCl2, during CVD of boron on a hot tungsten substrate was experimentally verified, Boron deposition started at substrate temperatures of around 750 degrees C and showed a significant deposition rate increase with an increase in temperature. At a surface temperature of...
Quantum chemical simulation of nitric oxide reduction by ammonia (scr reaction) on v2o5 / tio2 catalyst surface
Soyer, Sezen; Önal, Işıl; Department of Chemical Engineering (2005)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by density functional theory (DFT) calculations. The computations indicated that SCR reaction consisted of three main parts. In the first part ammonia activation on Brønsted acidic V-OH site as NH4+ species by a nonactivated process takes place. The second part includes the interaction of NO with pre-adsorbed NH4 + species to eventually form nitros...
GERMANIUM NANOCLUSTERS - CHEMICAL-VAPOR-DEPOSITION OF DIGERMANE IN ZEOLITE-Y AND MORDENITE
DAG, O; KUPERMAN, A; OZIN, GA (Wiley, 1994-02-01)
Uniform arrays of intrazeolite germanium nanoclusters have been produced by the topotactic chemical vapor deposition of digermane within the diamond network of alpha-cages of acid zeolite Y and the main channel of mordenite. The conditions within the zeolite hosts ensure that the Ge2H2 CVD-type anchored precursors self-assemble to produce the anchored (Ge8)n+ nanoclusters shown in the Figure.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. AKSOY, Y. E. Kalay, and H. E. Ünalan, “Germanium nanowire synthesis using solid precursors,”
JOURNAL OF CRYSTAL GROWTH
, pp. 20–29, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40601.