Germanium nanowire synthesis using solid precursors

2014-04-15
We report on the synthesis of single crystalline, high aspect ratio germanium (Ge) nanowires (NWs) by vapor transport method using three different solid powder precursors. Investigated precursors were either powder like germanium or powder mixtures like germanium dioxide with carbon and germanium iodide with germanium. As-grown NWs were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD) and X-Ray photoelectron spectroscopy (XPS) to obtain structural information. The effect of temperature and pressure on the diameter and morphology of the NWs were determined. Both pressure and temperature were found to increase the diameter of the NWs independent of precursor type. Growth direction of the NWs was found to be the same while clear differences in the morphology and surrounding oxide layer thickness were observed with different precursors. Oxide layer removal via hydrobromic acid treatment was also realized. Results provided in this paper allow the basis for optimizing the synthesis of Ge NWs using solid precursors.
JOURNAL OF CRYSTAL GROWTH

Suggestions

Catalytic partial oxidation of propylene on metal surfaces by means of quantum chemical methods
Kızılkaya, Ali Can; Önal, Işık; Department of Chemical Engineering (2010)
Direct, gas phase propylene epoxidation reactions are carried out on model slabs representing Ru-Cu(111) bimetallic and Cu(111) metallic catalyst surfaces with periodic Density Functional Theory (DFT) calculations. Ru-Cu(111) surface is modelled as a Cu(111) monolayer totally covering the surface of Ru(0001) surface underneath. The catalytic activity is evaluated following the generally accepted oxametallacycle mechanism. It is shown that the Ru-Cu(111) surface has a lower energy barrier (0.48 eV) for the s...
BHCl2 formation during chemical vapor deposition of boron in a dual-impinging jet reactor
Sezgi, Naime Aslı; Ozbelge, HO (1997-12-01)
Chemical vapor deposition (CVD) of boron from BCl3 and Hz was investigated in a dual-impinging jet reactor which was connected to an FT-IR spectrometer for on-line chemical analysis of the reactor outlet stream. Formation of the intermediate, BHCl2, during CVD of boron on a hot tungsten substrate was experimentally verified, Boron deposition started at substrate temperatures of around 750 degrees C and showed a significant deposition rate increase with an increase in temperature. At a surface temperature of...
Quantum chemical simulation of nitric oxide reduction by ammonia (scr reaction) on v2o5 / tio2 catalyst surface
Soyer, Sezen; Önal, Işıl; Department of Chemical Engineering (2005)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by density functional theory (DFT) calculations. The computations indicated that SCR reaction consisted of three main parts. In the first part ammonia activation on Brønsted acidic V-OH site as NH4+ species by a nonactivated process takes place. The second part includes the interaction of NO with pre-adsorbed NH4 + species to eventually form nitros...
Chemical Interactions of Nano Islandic Graphene Grown on Titanium Dioxide Substrates by Chemical Vapor Deposition
Karamat, S.; Khalique, U.; Usman, Arslan; Javaid, Asad; Oral, Ahmet (2022-03-01)
In this work, direct growth of graphene is carried out on TiO2 (110) substrates by chemical vapor deposition. For few device applications, it is convenient to grow graphene directly on the dielectric substrates rather than metal foil to minimize transfer and surface interface defects. Raman spectrum support graphene growth on TiO2 substrate by exhibiting D and G peaks. Graphene covered the whole TiO2 substrate with few areas where higher growth of carbon atoms occurs. The contrast of SEM images clearly show...
Germanium solar cells prepared by ion implantation
Kabacelik, Ismail; Turan, Raşit (2013-09-01)
Development of Ge solar cells for multijunction solar cells, where the p-n junction is formed by ion implantation is investigated. Ge samples are doped by phosphorus (P) ions having 60 keV energy at dose ratios of 1x10(13), 1x10(14), 1x10(16) ve 1x10(16) ions/cm(2) at room temperature. The influences of P concentration and activation temperature on Ge solar cells is investigated. P concentration and layer resistance are measured by secondary ion mass spectrometry (SIMS) and a 4-point probe, respectively. La...
Citation Formats
B. AKSOY, Y. E. Kalay, and H. E. Ünalan, “Germanium nanowire synthesis using solid precursors,” JOURNAL OF CRYSTAL GROWTH, pp. 20–29, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40601.