Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Degradation of poly(carbonate urethane) by gamma irradiation
Date
2007-06-01
Author
Ozdemir, T.
Usanmaz, Ali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
0
downloads
Cite This
Poly(carbonate urethane) (PCU), is a valuable commercial engineering polymer. In order to understand the possible use of PCU in radioactive waste management as a solidifying agent or as a disposal container, radiation stability of the PCU is studied by Co-60 gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h. The total dose of irradiation was up to 6.24 MGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with rate and total dose of irradiation. Ultimate tensile strength and toughness first increased and then decreased with the irradiation dose. Half value dose (HVD) for elongation was 4010 kGy and for tensile strength 60 10 kGy at the dose rate of 1540 Gy/h. The non-irradiated PCU transparent color changed to yellow and then brown with increased irradiation dose. The FTIR spectral analysis showed a random scission of polymer with irradiation. From the experimental observation, it was shown that PCU can be used for embedding radioactive waste for about 300 years.
Subject Keywords
Irradiation
,
Gamma
,
Poly(carbonate urethane) (PCU)
,
Degradation
,
Discoloration
,
Radioactive waste
,
Conditioning
URI
https://hdl.handle.net/11511/58030
Journal
RADIATION PHYSICS AND CHEMISTRY
DOI
https://doi.org/10.1016/j.radphyschem.2006.11.002
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Manufacturing of Functionally Graded Porous Products by Selective Laser Sintering
Erdal Erdoğmuş, Merve; Dağ, Serkan (2008-09-25)
Selective laser sintering (SLS) is a rapid prototyping technique which is used to manufacture plastic and metal models. The porosity of the final product obtained by SLS can be controlled by changing the energy density level used during the manufacturing process. The energy density level is itself dependent upon manufacturing parameters such as laser power, hatching distance and scanning speed. Through mechanical characterization techniques, it is possible to quantitatively relate the energy density levels ...
Characterization of novel materials for fused filament fabrication
AL-DUAIS, ABDULLAH ABDULRAHMAN NAJI; Özerinç, Sezer; Kazanç Özerinç, Feyza; Department of Mechanical Engineering (2021-6-24)
Fused filament fabrication (FFF) is a polymer additive manufacturing technology that is suitable for a wide range of applications due to its low cost and ease of use. This thesis investigated two types of novel materials for FFF use. First, a foaming PLA filament is considered and the mechanical properties of 3D printed specimens using this filament is characterized. The results show that the strength, modulus and density of the foaming PLA can be tuned over a wide range of values by varying FFF process par...
Production of nano alumoxane from aluminum hydroxide
Sezgiker, Korhan; Gündüz, Güngör; Department of Chemical Engineering (2010)
Alumina (Al2O3) is one of the most widely used engineering ceramic. It can be used in a wide range of applications like electrical/thermal insulation, wear resistance, structural refractories, cutting tools, abrasives, catalyst carriers and coatings. A traditional ceramic process has several steps (i.e. powder synthesis and processing, shape forming, drying, organic burnout and densification). Accessing powders with sizes in the range of a couple of micrometers down to several tens of nanometers is consider...
Enhancing thermal conductivity of epoxy with a binary filler system of h-BN platelets and Al2O3 nanoparticles
Yetgin, Hasan; Veziroglu, Salih; Aktas, Oral Cenk; Yalçınkaya, Tuncay (Elsevier BV, 2020-04-01)
Epoxy resin is a common adhesive bonding material used to join dissimilar materials, especially in the electronics and aerospace industries. However, its low thermal conductivity and high coefficient of thermal expansion limit the direct use of epoxy in practical applications. In order to improve thermo-mechanical properties, we have prepared a series of epoxy composites using a binary system of hexagonal-boron nitride (h-BN) and aluminum oxide (Al2O3) fillers and analyzed the effect of the ratio of these f...
Preparation of crosslinkable high density polyethylene and polypropylene polyblends
Koltuksuz, Barış; Tinçer, İsmail Teoman; Özçubukçu, Salih; Department of Polymer Science and Technology (2015)
High density polyethylene (HDPE) and polypropylene (PP) are two commonly used thermoplastic polymers existing in the commodity plastic market due to their developed and easy post-reactor processability characteristics. Although these two polymers can be subjected to reprocessing, they eventually experience critical losses in their main physical and mechanical properties at elevated temperatures. With the aim of preventing these losses in their mechanical and thermal properties in their individual and blende...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Ozdemir and A. Usanmaz, “Degradation of poly(carbonate urethane) by gamma irradiation,”
RADIATION PHYSICS AND CHEMISTRY
, pp. 1069–1074, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/58030.