Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ALCAM is indirectly modulated by miR-125b in MCF7 cells
Date
2015-05-01
Author
AKMAN, H. Begum
SELCUKLU, S. Duygu
DONOGHUE, Mark T. A.
AKHAVANTABASI, Shiva
SAPMAZ, Aysegul
SPILLANE, Charles
Yakicier, M. Cengiz
Erson Bensan, Ayşe Elif
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
154
views
0
downloads
Cite This
MicroRNA (miRNA) deregulation is associated with various cancers. Among an expanding list of cancer-related miRNAs, deregulation of miR-125b has been well documented in many cancers including breast. Based on current knowledge, miR-125b is considered to be a tumor suppressor in breast cancers. While important messenger RNA (mRNA) targets have been defined for miR-125b, here, we aimed to further investigate direct/indirect consequences of miR-125b expression in breast cancer cells by using a transcriptome approach. Upon miR-125b expression, a total of 138 cancer-related genes were found to be differentially expressed in breast cancer cells. While only a few of these were predicted to be direct mRNA targets, majority of the gene expression changes were potentially downstream and indirect effects of miR-125b expression. Among these, activated leukocyte antigen molecule (ALCAM) mRNA and protein levels were found to be highly significantly increased upon miR-125b expression. Given the tumor suppressor role of miR-125b in our model system, upon silencing of ALCAM expression, cell proliferation rate re-increased in miR-125b-expressing cells. While ALCAM's possible context-dependent roles are not clear in breast cancer, a diverse expression pattern of ALCAM mRNA was detected in a panel of breast cancer patient samples. Differentially expressed/regulated cancer-related genes upon miR-125b expression along with the significant increase of ALCAM are of future interest to understand how deregulated expression of miR-125b may have a tumor suppressor role in breast and other cancers.
Subject Keywords
miR-125b
,
ALCAM
,
Breast cancer
,
PERP
,
CTGF
,
Microarray
URI
https://hdl.handle.net/11511/40738
Journal
TUMOR BIOLOGY
DOI
https://doi.org/10.1007/s13277-014-2987-5
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Etoposide resistance in MCF-7 breast cancer cell line is marked by multiple mechanisms
Alpsoy, Aktan; Yasa, Seda; Gündüz, Ufuk (2014-04-01)
Purpose: Acquired or intrinsic drug resistance is one of the major handicaps in the success of chemotherapy. Etoposide is a topoisomerase II poison widely used in chemotherapy. Similar to other topoisomerase inhibitors and DNA damaging agents, resistance to etoposide may arise as a result of alterations in target expression and activity, increased drug efflux and alterations in DNA damage response mechanisms. Here, we tested the involvement of such mechanisms in etoposide-resistant MCF-7 breast cancer cells.
Epidermal growth factor receptor-targeted immunoliposomes for delivery of celecoxib to cancer cells
LIMASALE, Yanuar Dwi Putra; Tezcaner, Ayşen; Özen, Can; Keskin, Dilek; Banerjee, Sreeparna (2015-02-20)
Cyclooxygenase-2 (COX-2) is highly expressed in many different cancers. Therefore, the inhibition of the COX-2 pathway by a selective COX-2 inhibitor, celecoxib (CLX), may be an alternative strategy for cancer prevention and therapy. Liposomal drug delivery systems can be used to increase the therapeutic efficacy of CLX while minimizing its side effects. Previous studies have reported the encapsulation of CLX within the non-targeted long circulating liposomes and functional effect of these formulations agai...
Aldo Keto Reductases AKR1B1 and AKR1B10 in Cancer: Molecular Mechanisms and Signaling Networks.
Banerjee, Sreeparna (2021-05-05)
Deregulation of metabolic pathways has increasingly been appreciated as a major driver of cancer in recent years. The principal cancer-associated alterations in metabolism include abnormal uptake of glucose and amino acids and the preferential use of metabolic pathways for the production of biomass and nicotinamide adenine dinucleotide phosphate (NADPH). Aldo-keto reductases (AKRs) are NADPH dependent cytosolic enzymes that can catalyze the reduction of carbonyl groups to primary and secondary alcohols usin...
Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer
Gündüz, Ufuk; Tansik, Gulistan; Mutlu, Pelin; Unsoy, Gozde; YAKAR, ARZU; Khodadust, Rouhollah; Gunduz, Gungor (2014-07-01)
Conventional cancer chemotherapies cannot differentiate between healthy and cancer cells, and lead to severe side effects and systemic toxicity. Another major problem is the drug resistance development before or during the treatment. In the last decades, different kinds of controlled drug delivery systems have been developed to overcome these shortcomings. The studies aim targeted drug delivery to tumor site. Magnetic nanoparticles (MNP) are potentially important in cancer treatment since they can be target...
Reversal of breast cancer resistance protein mediated multidrug resistance in MCF7 breast adenocarcinoma cell line
Urfalı, Çağrı; Gündüz, Ufuk; Department of Biology (2011)
Resistance to various chemotherapeutic agents is a major problem in success of cancer chemotherapy. One of the primary reasons of development of multidrug resistance (MDR) is the overexpression of ATP binding cassette (ABC) transporter proteins. Breast cancer resistance protein (BCRP) belongs to ABC transporter family and encoded by ABCG2 gene. BCRP is mainly expressed in MDR1 (P-glycoprotein) lacking breast cancer cells. Overexpression of BCRP leads to efflux of chemotherapeutic agents at higher rates, the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. B. AKMAN et al., “ALCAM is indirectly modulated by miR-125b in MCF7 cells,”
TUMOR BIOLOGY
, pp. 3511–3520, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40738.