Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of Inert Plasticizers on Mechanical, Thermal, and Sensitivity Properties of Polyurethane-Based Plastic Bonded Explosives
Date
2014-10-15
Author
Yilmaz, Gurkan Atinc
Sen, Deger
Kaya, Zekeriya Taner
Tincer, İsmail Teoman
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
422
views
0
downloads
Cite This
Mechanical, thermal, and sensitivity properties of plastic bonded explosives (PBX) depend on the type of ingredients in their formulation. Aim of the work is to develop aluminized cast PBX formulations and process conditions by using alternative inert plasticizers to have similar or better properties than PBXN-109 without compromising sensitivity properties. Although very small portion of total production of plasticizers is used for solid rocket propellant and explosive formulations, they play very significant role in that area. Both inert and energetic plasticizers have involved propellant and explosive formulations to improve process parameters, mechanical properties, and even insensitivity properties of them. Isodecyl pelargonate and dioctyl adipate are the most preferred inert plasticizers in polyurethane based thermoset propellant and explosive formulations. In addition to them, diisononyl adipate and diisononyl phthalate were used and screened as inert plasticizer candidates for aluminized cast PBX formulations. Mechanical, thermal, and sensitivity properties of PBX formulations were studied and compared in detail. (C) 2014 Wiley Periodicals, Inc.
Subject Keywords
Composites
,
Plasticizer
,
Polyurethanes
,
Properties and characterization
URI
https://hdl.handle.net/11511/40768
Journal
JOURNAL OF APPLIED POLYMER SCIENCE
DOI
https://doi.org/10.1002/app.40907
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral
Guler, Turkan; Tayfun, Umit; Bayramlı, Erdal; DOĞAN, Mehmet (2017-01-10)
The effect of expandable graphite (EG) was studied on the flame retardant, thermal and mechanical properties of thermoplastic polyurethane (TPU) containing huntite&hydromagnesite (HH). According to the flammability tests results, the synergistic interaction was observed between HH and EG. The maximum limiting oxygen index (LOI value was observed at a ratio of 1:1 (HH:EG) and the highest vertical burning test (UL-94) rating of V0 was observed at a ratios of 4:1, 3:2 and 1:1. The synergistic interaction betwe...
Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral
ATABEK SAVAŞ, Lemiye; Deniz, Tugba Kaya; Tayfun, Umit; DOĞAN, Mehmet (2017-01-01)
The effect of microcapsulated red phosphorus (mRP) was studied on the flame retardant, thermal and mechanical properties of thermoplastic polyurethane (TPU) composites containing Huntite&hydromagnesite (HH). The flame retardant properties of TPU based composites were investigated using limiting oxygen index (LOI), vertical burning test (UL 94), thermogravimetric analysis (TGA) and mass loss calorimeter. The mechanical properties of composites were studied using tensile test and dynamic mechanical analysis (...
Effects of nanoparticles on thermal degradation of polylactide/aluminium diethylphosphinate composites
Kaya, Hatice; Özdemir, Esra; Kaynak, Cevdet; Hacaloğlu, Jale (2016-03-01)
We investigated the thermal degradation characteristics of polylactide (PLA) aluminium diethylphosphinate (AlPi) composites involving SiO2, halloysite (HNT) and organically modified montmorillonite (OMMT) via direct pyrolysis mass spectrometry. Presence of nanoparticles, SiO2, HNT and OMMT affected both thermal stability and relative yields of thermal degradation products of PLA/AlPi. The transesterification reactions and interactions between PLA and AlPi were depressed in the presence of SiO2 and HNT. The ...
Effect of resin and fiber on the abrasion, impact and pressure resistance of cylindrical composite structures
Kaya, Derya; Yılmazer, Ülkü; Department of Chemical Engineering (2011)
The aim of this study was to investigate the effects of resin and fiber on the abrasion, impact and internal pressure resistances of fiber reinforced plastic composite pipes produced by continuous filament winding method. For this study, pipe samples were produced with different combinations of resin type, fiber type, fiber amount and fiber length. All the samples were tested in accordance with the related ISO (International Organization for Standardization), DIN (German Standardization Institution) and BSI...
Effect of carbon nanotube surface treatment on the morphology, electrical, and mechanical properties of the microfiber-reinforced polyethylene/poly(ethylene terephthalate)/carbon nanotube composites
Yesil, Sertan; Bayram, Göknur (2013-01-15)
The aim of this study is to investigate the effects of carbon nanotube (CNT) chemical properties, CNT content, and molding temperature on the morphology, electrical, and mechanical properties of the microfiber-reinforced polymer composites. These composites were prepared by extrusion and hot stretching the poly(ethylene terephthalate) (PET)/CNT phase in high density polyethylene (HDPE) matrix. Surfaces of the CNT were modified by purification with strong acid mixture (HNO3 : H2SO4 mixture 1 : 1 by volume) f...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. A. Yilmaz, D. Sen, Z. T. Kaya, and İ. T. Tincer, “Effect of Inert Plasticizers on Mechanical, Thermal, and Sensitivity Properties of Polyurethane-Based Plastic Bonded Explosives,”
JOURNAL OF APPLIED POLYMER SCIENCE
, pp. 0–0, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40768.