Dependence of n-cSi/MoOx Heterojunction Performance on cSi Doping Concentration

2017-04-05
Nasser, Hisham
Kokbudak, Gamze
Mehmood, Haris
Turan, Raşit
In this work, we demonstrate a strong correlation between crystalline silicon (cSi) base doping concentration and the performance of cSi/MoOx heterojunction solar cell by investigating the structure numerically based on Silvaco TCAD simulation tool and experimentally. The doping concentration of n-type cSi was scanned in the 1 x 10(15) - 2 x 10(16) cm(-3) range. Simulation results show that utilizing highly doped cSi wafer degrades the conversion efficiency of cSi/MoOx solar cell. Efficiency of 11.16% has been obtained from simulation results for 1 x 10(15) cm(-3) doping concentration while this value reduces to less than 4% for wafer with a doping concentration of 2 x 10(16) cm(-3). These simulation results were demonstrated experimentally and n-type cSi wafers with two different doping concentrations were considered, 1 x 10(15) and 5.5 x 10(15) cm(-3). The key concept underlying this work is to differentiate explicitly the effect of cSi doping concentration on the performance of cSi/MoOx cell, thus a simple cell design is considered where n-type cSi wafers were heavily phosphorous-doped to form (n(+)) at the front of the Si and thermally evaporated MoOx films with various thicknesses (<15 nm) were inserted at the rear between cSi and Al contact. In accordance to simulation results, highly doped wafer exhibited low conversion efficiency of 3.32% while using lower doped wafer significantly improves the efficiency from 3.32 to 10.9%. (C) 2017 The Authors. Published by Elsevier Ltd.

Suggestions

Effect of Laser Parameters and Post-Texturing Treatments on the Optical and Electrical Properties of Laser Textured c-Si Wafers
RADFAR, Behrad; ES, FIRAT; NASSER, Hisham; AKDEMİR, Ozan; Bek, Alpan; Turan, Raşit (2018-03-21)
Surface plays a crucial role in the performance of crystalline silicon (cSi) based solar cells as it affects both electrical and optical properties. To minimize reflection from the flat surface and thus improve light trapping, the cSi wafers must be textured. For mono-cSi cells, anisotropic alkaline etchants are commonly utilized to create pyramids on the surface. However, this method is not viable for multi-crystalline silicon (mc-Si) wafers due to the presence of different and random crystallographic orie...
Tuning the electron beam evaporation parameters for the production of hole and electron transport layers for perovskite solar cells
Coşar, Mustafa Bura; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2019)
This study evaluates the use of electron beam evaporation technique for the deposition of electron and hole transport layers for perovskite solar cells where cell productions were performed in n-i-p structure. NiO and TiO layers were studied for hole transport layer and TiO2 and Nb2O5 layers were deposited for electron transport purposes. To optimize the suitable evaporation parameters for efficient perovskite cell production, single layers of each material were deposited at different conditions of oxygen f...
Two-Dimensional Numerical Analysis of Phosphorus Diffused Emitters on Black Silicon Surfaces
TÜRKAY, Deniz; Yerci, Selçuk (2018-07-06)
In this work, we present an analysis on electrical performance of phosphorus diffused emitters on black silicon surfaces through two-dimensional simulations. In particular, we focus on the extraction and analysis of the emitter saturation current density (J(0e)), the sheet resistance (R-sh), spatial collection efficiency profile and relatedly J(sc) of a solar cell. Using process simulations, we form emitters on periodic triangular structures with various aspect ratios (R) and emitter profiles. We show that ...
Development of a high yield fabrication process for MEMS based resonant mass sensors for cell detection applications
Töral, Taylan Berkin; Külah, Haluk; Department of Micro and Nanotechnology (2014)
This thesis reports the development of a high yield fabrication flow for MEMS based resonant mass sensors for cell detection applications. The basic design is a gravimetric resonator for real-time electronic detection of captured cells through bioactivation on gold coated active area which assures an antibody based cell capture inside a biocompatible microfluidic channel. The proposed design is demonstrated to have various advantages over its conventional counterparts. However, the yield of the previous fab...
Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact
MEHMOOD, Haris; NASSER, Hisham; Tauqeer, Tauseef; HUSSAIN, Shahzad; Ozkol, Engin; Turan, Raşit (2018-03-25)
Transition metal oxides/silicon heterocontact solar cells are the subject of intense research efforts owing to their simpler processing steps and reduced parasitic absorption as compared with the traditional silicon heterostructure counterparts. Recently, molybdenum oxide (MoOx, x<3) has emerged as an integral transition metal oxide for crystalline silicon (cSi)-based solar cell based on carrier-selective contacts (CSCs). In this paper, we physically modelled the CSC-based cSi solar cell featuring MoOx/intr...
Citation Formats
H. Nasser, G. Kokbudak, H. Mehmood, and R. Turan, “Dependence of n-cSi/MoOx Heterojunction Performance on cSi Doping Concentration,” 2017, vol. 124, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40791.