Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design of a tuned vibration absorber for a slender hollow cylindrical structure
Date
2020-09-01
Author
Aksoy, Tuğrul
Özgen, Gökhan Osman
Acar, Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
284
views
0
downloads
Cite This
In this paper, details of the design work for a tuned vibration absorber to be used on a hollow cylindrical structure is presented. The vibration problem is of resonant type and the tuned vibration absorber is designed to suppress the displacement vibration response of the free end of the slender hollow structure dominated by the contribution of its lowest transverse vibration modes. The structure is modeled using a commercial finite element software. Finite element model of the structure is verified using experimentally obtained frequency response functions and modal parameters. Effective parameters of the tuned vibration absorber design are then determined based on finite element analysis simulations of the vibration suppression performance of the tuned vibration absorber as it is used on the structure. Details of the tuned vibration absorber design are determined and a prototype is fabricated. Prototype tuned vibration absorber is then characterized experimentally both as a standalone system and also as it is used on the main structure. Vibration reduction performance of the physical prototype of the tuned vibration absorber is also compared with its vibration reduction performance estimated from finite element analysis simulations so that the analysis based design process can be validated. Communicated by Dumitru Caruntu.
Subject Keywords
Mechanical Engineering
,
Mechanics of Materials
,
Ocean Engineering
,
General Mathematics
,
Civil and Structural Engineering
,
Condensed Matter Physics
,
Automotive Engineering
,
Aerospace Engineering
URI
https://hdl.handle.net/11511/40992
Journal
Mechanics Based Design of Structures and Machines
DOI
https://doi.org/10.1080/15397734.2019.1657889
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Design and analysis of filament wound composite tubes
Balya, Bora; Parnas, Kemal Levend; Department of Mechanical Engineering (2004)
This thesis is for the investigation of the design and analysis processes of filament wound composite tubes under combined loading. The problem is studied by using a computational tool based on the Finite Element Method (FEM). Filament wound tubes are modeled as multi layered orthotropic tubes. Several analyses are performed on layered orthotropic tubes by using FEM. Results of the FEM are examined in order to investigate characteristics of filament wound tubes under different combined loading conditions. W...
Solution of the dynamic frictional contact problem between a functionally graded coating and a moving cylindrical punch
BALCI, MEHMET NURULLAH; Dağ, Serkan (Elsevier BV, 2019-04-01)
This paper presents an analytical method developed to investigate the dynamic frictional contact mechanics between a functionally graded coating and a rigid moving cylindrical punch. Governing partial differential equations of elastodynamics are solved analytically by applying Galilean and Fourier transformations. Interface continuity and boundary conditions are written and contact problem is then reduced to a singular integral equation of the second kind. The singular integral equation is solved numericall...
Development of a shell finite element for large deformation analysis of laminated composites
Yıldız, Tuba; Darendeliler, Haluk; Department of Mechanical Engineering (2008)
The objective of the present work is to investigate the behavior of laminated fiber -reinforced polymer matrix composite shell structures under bending load with the help of a modified finite element computer code which was previously developed for the analysis of pseudo-layered single material shells. The laminates are assumed to be orthotropic and the formulation is adapted to first order shear deformation theory. The aim is to determine the large deformation characteristics numerically, and to predict th...
A three component force transducer for reinforced concrete structural testing
Canbay, Erdem; Tankut, T (Elsevier BV, 2004-01-01)
The design, manufacture and calibration of two special force transducers, capable of measuring the axial force, shear, and bending moment at the base of a structural column are presented. The special force transducers were fabricated to measure the reactions at the base of the exterior columns of a reinforced concrete three-bay, two-story test specimen. The force transducers had the following capacities: 35 kN for axial load, 4 kN for shear, and 3 kN in for bending moment. These values include a safety fact...
Exact solution of rotating FGM shaft problem in the elastoplastic state of stress
Akis, Tolga; Eraslan, Ahmet Nedim (Springer Science and Business Media LLC, 2007-10-01)
Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca's yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considerina different material compositions as well as a wide range of bore radi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Aksoy, G. O. Özgen, and B. Acar, “Design of a tuned vibration absorber for a slender hollow cylindrical structure,”
Mechanics Based Design of Structures and Machines
, pp. 615–648, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40992.