Terahertz Resonances in the Dielectric Response Due to Second Order Phonons in a GaSe Crystal

2006-09-12
Yu, Baolong L
Altan, Hakan
Zeng, Fanang
Kartazayev, Vladimir
Alfano, Robert R
Mandal, Krishna C
The dielectric function and momentum relaxation time of carriers for a single-crystal GaSe were investigated using terahertz time-domain spectroscopy over the frequency range from 0.4 to 2.4 THz. The key parameters determined from THz data using the Drude model are: the plasma frequency ωp = 6.1 ± 0.5 THz, the average momentum relaxation time <τ> = 51 +± 6 fs for electrons. The THz absorption spectrum showed resonance structures attributed to the difference frequency combinations associated with acoustical and optical phonons. This paper has already been published, see B. L. Yu, F. Zeng, V. Kartazayev, and R. R. Alfano, “Terahertz studies of the dielectric response of and second order phonons in a GaSe crystal,” Appl. Phys. Lett. 86, 182104 (2005).

Suggestions

Temperature-dependent Raman scattering spectra of epsilon-GaSe layered crystal
Hasanlı, Nızamı; Ozkan, H; Kocabas, C (Elsevier BV, 2002-01-01)
The temperature dependencies (15-300 K) of seven Raman-active mode frequencies and linewidths in layered gallium selenide have been measured in the frequency range from 10 to 320 cm(-1). We observed softening and broadening of the optical phonon lines with increasing temperature. Comparison between the experimental data and theories of the shift and broadening of the intralayer phonon lines during heating of the crystal showed that the experimental dependencies can be explained by the contributions from the...
Thermally stimulated currents in n-InS single crystals
Hasanlı, Nızamı; Yuksek, NS (Elsevier BV, 2003-03-24)
Thermally stimulated current measurements are carried out on as-grown n-InS single crystals in the temperature range of 10-125 K. Experimental evidence is found for four trapping centers present in InS. They are located at 20, 35, 60 and 130 meV. The trap parameters have been determined by various methods of analysis, and they agree well with each other.
Resonant Raman scattering near the free-to-bound transition in undoped p-GaSe
Hasanlı, Nızamı; Ozkan, H (Wiley, 2001-01-01)
Raman spectra of GaSe layered crystal have been measured using a He-Ne laser and temperature tuning the free-to-bound gap in the range 10-290 K. Resonance enhancement of E'((12)) mode has been observed for both incident and scattered photon energies equal to the free-to-bound transition energy.
Electrical conductivity and Hall mobility in p-type TlGaSe2 crystals
Qasrawi, AF; Hasanlı, Nızamı (Elsevier BV, 2004-07-02)
Systematic dark electrical conductivity and Hall mobility measurements have been carried out in the temperature range of 200-350 K on p-type TlGaSe2 crystals. The analysis of the temperature-dependent electrical conductivity and carrier concentration reveals the extrinsic type of conduction with an acceptor impurity level located at 0.33 eV, and donor and acceptor concentrations of 9.0 x 10(15) and 1.3 x 10(16) cm(-3), respectively. A hole and electron effective masses of 0.520m(0) and 0.325m(0), respective...
Reflectance spectra and refractive index of a Nd : YAG laser-oxidized Si surface
Aygun, G; Atanassova, E; Turan, Raşit; Babeva, T (Elsevier BV, 2005-02-15)
The reflectance spectra and refractive index of Nd:YAG laser-oxidized SiO2 layers with thicknesses from 15 to 75 nm have been investigated with respect to the laser beam energy density and substrate temperature. Thickness and refractive index of films have been determined from reflectance measurements at normal light incidence in the spectral range 300-800 nm. It was found that the oxide-growth conditions at higher substrate temperatures and laser powers greater than 3.36 J cm(-2) provides a better film qua...
Citation Formats
B. L. Yu, H. Altan, F. Zeng, V. Kartazayev, R. R. Alfano, and K. C. Mandal, “Terahertz Resonances in the Dielectric Response Due to Second Order Phonons in a GaSe Crystal,” 2006, vol. 935, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41039.