Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Hydrogen-bonded multilayers of a neutral polymer and a polyphenol
Date
2008-06-10
Author
Erel Göktepe, İrem
Sukhishvili, Svetlana A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
We report on association of tannic acid (TA) with neutral or charged polymers in solution and at surfaces and contrast hydrogen-bonded and electrostatically associated polymer/TA complexes and TA/polymer layer-by-layer (LbL) films as per their stability in the pH scale. The neutral polymers used for hydrogen bonding with TA were poly(N-vinylcaprolactam) (PVCL), poly(N-vinylpyrrolidone) (PVPON), poly(ethylene oxide) (PEO), or poly(N-isopropylacrylamide) (PNIPAM), and the polymer used to explore electrostatic binding with TA was 90% quaternized poly (4-vinylpyridine) (Q90). Association of TA with polymers in solution was explored by measuring the turbidity of solutions. At surfaces, LbL film deposition and pH stability were followed by phase-modulated ellipsometry and in-situ Fourier transform infrared spectroscopy in attenuated total reflection mode (ATR-FTIR). While electrostatically stabilized films of TA with Q90 could not be deposited at low pH values (pH = 2), hydrogen-bonded films of TA with PVCL, PVPON, PEO, and PNIPAM could be constructed at pH 2 and did not dissolve until a critical dissolution pH of 9.5, 9, 8.5, and 8 (measured in 0.01 M buffer solutions) for PVCL/TA, PVPON/TA, PEO/TA, and PNIPAM/TA, respectively. In addition, all multilayers could be also constructed at pH 7.5 in solutions with low ionic strength. The high pH stability of these systems as compared to multilayers of the same neutral polymers with polyacrylic (PAA) or polymethacrylic (PMAA) acids is due to higher pK(a) value of TA of similar to 8.5 as estimated in this paper. We also show that multilayers of TA with a copolymer of N-vinylpyrrolidone containing 20 mol % of primary amino groups, PVPON-NH2-20, were highly stable in a wide pH range from 1.3 to 11.7 because of combined stabilization through both. electrostatic and hydrogen-bonding interactions. For all systems, pH windows for deposition and stability of LbL films at surfaces correlated with the phase behavior of TA complexes in solution. High pH stability of hydrogen-bonded films of TA as well as the capability of tuning the critical pH value for film dissolution in the range close to physiological pH values makes such multilayer systems promising candidates for biomedical applications.
URI
https://hdl.handle.net/11511/41141
Journal
MACROMOLECULES
DOI
https://doi.org/10.1021/ma800186q
Collections
Department of Chemistry, Article