Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Hydrogen generation from the hydrolysis of ammonia borane using cobalt-nickel-phosphorus (Co-Ni-P) catalyst supported on Pd-activated TiO2 by electroless deposition
Date
2011-01-01
Author
Rakap, Murat
Kalu, Egwu Eric
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Catalytically active, low-cost, and reusable transition metal catalysts are desired to develop on-demand hydrogen generation system for practical onboard applications. By using electroless deposition method, we have prepared the Pd-activated TiO2-supported Co-Ni-P ternary alloy catalyst (Co-Ni-P/Pd-TiO2) that can effectively promote the hydrogen release from ammonia-borane aqueous solution. Co-Ni-P/Pd-TiO2 catalysts are stable enough to be isolated as solid materials and characterized by XRD, SEM, and EDX. They are isolable, redispersible and reusable as an active catalyst in the hydrolysis of AB. The reported work also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (E-a = 54.9 kJ mol(-1)) and effects of the amount of catalyst, amount of substrate, and temperature on the rate for the catalytic hydrolysis of AB. Maximum H-2 generation rate of similar to 60 mL H-2 min(-1) (g catalyst)(-1) and similar to 400 mL H-2 min(-1) (g catalyst)(-1) was measured by the hydrolysis of AB at 25 degrees C and 55 degrees C, respectively. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/62797
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2010.09.027
Collections
Department of Chemistry, Article