A Bulk-Micromachined Three-Axis Capacitive MEMS Accelerometer on a Single Die

Aykutlu, Ulas
Torunbalci, Mustafa Mert
Akın, Tayfun
This paper presents a high-performance three-axis capacitive microelectromechanical system (MEMS) accelerometer implemented by fabricating individual lateral and vertical differential accelerometers in the same die. The fabrication process is based on the formation of a glass-silicon-glass multi-stack. First, a 35-mu m thick < 111 > silicon structural layer of an Silicon-On-Insulator (SOI) wafer is patterned with deep reactive ion etching (DRIE) and attached on a base glass substrate with anodic bonding, whose handle layer is later removed. Next, the second glass wafer is placed on the top of the structure not only for allowing to implement a top electrode for the vertical accelerometer, but also for acting as an inherent cap for the entire structure. The fabricated three-axis MEMS capacitive accelerometer die measures 12 x 7 x 1 mm(3). The x-axis and y-axis accelerometers demonstrate measured noise floors and bias instabilities equal to or better than 5.5 mu g/v Hz and 2.2 mu g, respectively, while the z-axis accelerometer demonstrates 12.6 mu g/v Hz noise floor and 17.4 mu g bias instability values using hybrid-connected fourthorder sigma-delta CMOS application specific integrated circuit (ASIC) chips. These low noise performances are achieved with a measurement range of over +/- 10 g for the x-axis and y-axis accelerometers and +12/-7.5 g for the z-axis accelerometer, suggesting their potential use in navigation grade applications. [2014-0351]


Fabrication of A Sandwich Type Three Axis Capacitive MEMS Accelerometer
Tez, Serdar; Akın, Tayfun (2013-11-06)
This paper presents a three axis capacitive MEMS accelerometer including individual lateral and vertical accelerometers in a same die. The three axis capacitive MEMS accelerometer is fabricated by utilizing a glass-silicon-glass multi-stack formed by a fabrication process depending on the double glass modified silicon on glass process (DGM-SOG), where the structural layer is selected to be 35 mu m thick silicon. The fabrication process uses the Au-Si eutectic bonding in the last step of the formation of th...
A single mass two-axis capacitive MEMS accelerometer with force rebalance
Köse, Talha; Terzioʇlu, Yunus; Azgın, Kıvanç; Akın, Tayfun (2015-03-26)
This paper presents a single mass 2-axis MEMS capacitive accelerometer with a unique force rebalance method achieved with the readout circuit developed for the simultaneous 2-axis acceleration sensing. Using a single mass structure with extra fingers for reading multiple axes allows better sensor performances when compared to multi-axis accelerometers with individual proof masses occupying the same die area. Test results show 274 mV/g scale factor for x-axis, and 280 mV/g scale factor for y-axis, while the ...
A Novel Method for Fabricating MEMS Three-Axis Accelerometers using Low Temperature Au-Sn Eutectic Bonding
Tez, Serdar; Torunbalci, Mustafa Mert; Akın, Tayfun (2016-11-03)
This paper presents a novel method for the fabrication of three-axis capacitive MEMS accelerometers by using low-temperature Au-Sn eutectic bonding that is applied to form a glass-silicon-glass multi-stack. The proposed method provides the implementation of individual in-plane and out-of-plane accelerometer elements in the same die using a glass-silicon-glass multi-stack structure formed at temperatures as low as 300 degrees C while still ensuring the advantages of the previous approaches such as the voltag...
A Capacitive MEMS Accelerometer Readout with Concurrent Detection and Feedback Using Discrete Components
Terzioglu, Yunus; Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (2014-05-08)
This paper presents an analog readout method for capacitive MEMS accelerometers in which the feedback actuation and capacitive detection are achieved simultaneously on the same electrode set. The presented circuit operates in closed-loop for improved linearity, and it is constructed in a hybrid platform package in which off-the-shelf discrete components are used together with the silicon-on-glass micro-accelerometer. The system is developed as a practical solution to reduce the complexity of the readout cir...
A simple out of plane capacitive MEMS accelerometer utilizing lateral and vertical electrodes for differential sensing
Terzioglu, Yunus; Kose, Talha; Azgın, Kıvanç; Akın, Tayfun (2015-11-01)
This paper presents an out-of-plane (z-axis) accelerometer, which incorporates the use of two different MEMS capacitive electrode structures in combination for implementing a linear closed-loop system. During the implementation, the complexity of the design and fabrication steps of the sensing element is kept at a minimum. The proposed accelerometer uses capacitive MEMS sensing element fabricated with a 4-mask process. This sensing element includes a comb finger type lateral electrode and a vertical paralle...
Citation Formats
S. TEZ, U. Aykutlu, M. M. Torunbalci, and T. Akın, “A Bulk-Micromachined Three-Axis Capacitive MEMS Accelerometer on a Single Die,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, pp. 1264–1274, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41265.