Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analytical and Numerical Solution for a Rigid Liquid Column Moving in a Pipe with Fluctuating Reservoir Head and Venting Entrapped Gas
Download
index.pdf
Date
2016-07-21
Author
TİJSSELİNG, Arris S
HOU, Qingzhi
Bozkuş, Zafer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
210
views
0
downloads
Cite This
The motion of liquid filling a pipeline is impeded when the gas ahead of it cannot escape freely. Trapped gas will lead to a significant pressure build-up in front of the liquid column, which slows down the column and eventually bounces it back. This paper is an extension of previous work by the authors in the sense that the trapped gas can escape through a vent. Another addition is that the driving pressure is not kept constant but fluctuating. The obtained analytical and numerical solutions are utilized in parameter variation studies that give deeper insight in the system's behavior.
Subject Keywords
Analytical solution
,
Pipe filling
,
Rigid column
,
Orifice
,
Venting gas
,
Entrapped gas
,
Nonlinear spring
,
Mass oscillation
URI
https://hdl.handle.net/11511/41368
DOI
https://doi.org/10.1115/pvp2016-63193
Collections
Department of Civil Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
ANALYTICAL EXPRESSIONS FOR LIQUID-COLUMN VELOCITIES IN PIPELINES WITH ENTRAPPED GAS
Tijsseling, Arris S.; Hou, Qingzhi; Bozkuş, Zafer (2015-01-01)
High pressures and high temperatures may arise in pipelines when a liquid column is suddenly accelerated into a gas pocket trapped at a closed end. A mass oscillation occurs that is described by nonlinear equations for both liquid and gas. Analytical expressions are derived for the uniform velocity of the liquid column, from which pressures and gas temperatures follow. The obtained results are validated against theoretical and experimental results published by fellow researchers.
Analytical Solutions for Liquid Slugs and Pigs Traveling in Pipelines with Entrapped Gas
TİJSSELİNG, Arris S; QİNGZHİ, Hou; Bozkuş, Zafer (2017-07-20)
Liquid slugs have a relatively low mass and can therefore when they occupy a full cross-section of a pipeline be accelerated to very high velocities by means of pressurized gas. When entrapped gas pockets are present, pressures and temperatures may become dangerously high. Simple models and analytical solutions are derived and used to predict transient velocities, pressures and temperatures. The models have a generic character as they also describe the basics of breaking surface waves impacting on a wall, a...
Rapid Liquid Filling of a Pipe With Venting Entrapped Gas: Analytical and Numerical Solutions
Tijsseling, Arris S.; Hou, Qingzhi; Bozkuş, Zafer (ASME International, 2019-08-01)
The motion of liquid filling a pipeline is impeded when the gas ahead of it cannot escape. Entrapped gas will lead to a significant pressure build-up in front of the liquid column, which slows down the column and eventually bounces it back. The pressure and temperature in the gas may become dangerously high, and for example, lead to fires and explosions caused by auto-ignition. This paper considers the case where the trapped gas can escape through a vent. One new element is that the pressure head of the liq...
Evaluation of limestone incorporated cement compositions for cementing gas hydrate zones in deepwater environments
Hıdıroğlu, İnanç Alptuğ; Parlaktuna, Mahmut; Yaman, İsmail Özgür; Department of Petroleum and Natural Gas Engineering (2017)
One of the potential problems which must be overcome during oil or gas exploration in deepwater environments is to complete the drilling operations without decomposing the gas hydrates. Gas hydrates remain stable as long as the thermodynamic conditions are not changed. But, especially by increasing temperature during drilling operations, there is always a possibility of change in thermodynamic conditions, which will cause decomposition. Another factor which may disturb the thermodynamic conditions is the ev...
Assessment of production strategies of a gas condensate field using a black oil simulator: a case study
Parlaktuna, Burak; Sınayuç, Çağlar; Department of Petroleum and Natural Gas Engineering (2015)
Condensates are low-density liquids that are produced along with the gas phase from wet gas or gas-condensate reservoirs. Availability of these liquids makes gas-condensate reservoirs more profitable than the other gas reservoirs since condensates are gasoline like fluids with API gravities more than 45°. Although the condensate production is profitable, the management of gas-condensate reservoirs is challenging. Due to their nature, condensates condense and separate from the gas if the pressure drops below...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. S. TİJSSELİNG, Q. HOU, and Z. Bozkuş, “Analytical and Numerical Solution for a Rigid Liquid Column Moving in a Pipe with Fluctuating Reservoir Head and Venting Entrapped Gas,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41368.