MODELING OF DYNAMIC DELAMINATION IN L-SHAPED COMPOSITE BRACKETS

2012-11-15
Gozluklu, Burak
Çöker, Demirkan
One of the widely used geometrically complex parts in recent civil passenger aircrafts is the L-shaped composite brackets connecting ribs to skins. Due to the sharp curved geometry, interlaminar opening stresses are induced and delamination occurs under considerable mode-mixities at the corner. Dynamic phenomena during delamination initiation and propagation of L-shaped beams are investigated using dynamic (explicit) finite element analysis in conjunction with cohesive zone methods (CZM). In ABAQUS a sequential explicit analysis followed by static (implicit) solution is used where the solution duration is considerably reduced. The thickness of the specimens is varied from 1.0 mm to 4.0 mm while the inner radius is kept same. Loading is applied parallel to one of the arms quasi-statically. Even though the crack is at the very middle of the specimen, this specific loading type yields variable traction fields and mode-mixities in the two sides of the crack in which delamination occurs under shear stress dominated loading on one crack tip and opening stress dominated loading on the other. It is observed that the delamination propagation is highly dynamic even though the loading is quasi-static. The speed of the delamination under shear dominated loading at one side can reach 800 m/s and under normal stress dominated loading is 50 m/s in dedicated thickness levels. In addition, moving elasto-dynamic radial compressive waves along the interface are observed. An important observation for design applications, a typical solution of adding more plies to the laminate might yield failure transition to a secondary crack nucleating at the arm and propagating towards the center crack.

Suggestions

Modeling of the dynamic delamination of L-shaped unidirectional laminated composites
Gozluklu, Burak; Çöker, Demirkan (2012-03-01)
One of the widely used geometrically complex parts in advanced commercial aircraft is the L-shaped composite. Due to the sharp curved geometry, interlaminar opening stresses are induced and delamination occurs under considerable mode-mixities in L-shaped beams. Dynamic phenomena during delamination initiation and propagation of L-shaped beams are investigated using dynamic (explicit) finite element analysis in conjunction with cohesive zone methods. The 2-D model consists of 24 plies of unidirectional CFRP ...
Development of bolted flange design tool based on finite element analysis and artificial neural network
Yıldırım, Alper; Kayran, Altan; Department of Aerospace Engineering (2015)
In bolted flange connections, commonly utilized in aircraft engine designs, structural integrity and minimization of the weight are achieved by the optimum combination of the design parameters utilizing the outcome of many structural analyses. Bolt size, number of bolts, bolt locations, casing thickness, flange thickness, bolt preload, and axial external force are some of the critical design parameters in bolted flange connections. Theoretical analysis and finite element analysis (FEA) are two main approach...
Numerical modeling of failure in composite L-beam and T-joint structures
Temiz, Pakize; Çöker, Demirkan; Department of Aerospace Engineering (2022-12-02)
Laminated curved-shape composite structures which are used as stiffening components in aerospace, wind, automotive and marine industries are subjected to high radial and tangential stresses. For the scope of this thesis, different modelling strategies are investigated to simulate interlaminar and intralaminar failure in composite L-beam and T-joint structures using commercial finite element (FE) code ABAQUS/Standard 2020. In the first part, [030] and [03/903/03/903/03]s laminated L-beams are evaluated using...
Modeling of intersonic delamination in curved and thick composite laminates under quasi-static loading
Gözlüklü, Burak; Çöker, Demirkan; Department of Aerospace Engineering (2014)
One of the widely used geometrically complex parts in advanced commercial aircraft is L-shaped composite laminates in which mixed-mode delamination failure is reported. Dynamic delamination under quasi-static loading is studied using explicit finite element method in conjunction with Cohesive Zone Modeling (CZM). A 4-noded interface element working with Bilinear (BL), Xu-Needleman (XN) and ratedependent bilinear (RD) CZMs are implemented in ABAQUS/Explicit. The interface elements are validated with benchmar...
EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DEBONDING AT THE INTERFACE OF TWO L-SHAPED POLYCARBONATE PLATES
Yavas, Denizhan; Uyar, Imren; Gozluklu, Burak; Çöker, Demirkan (2012-11-15)
L-shaped composite structures are increasingly replacing metal ribs and box structures especially in recent civil aerospace structures and wind turbine blades. De lamination of these L-shaped composite laminates occur by interlaminar opening stresses at the curved region under perpendicular loading to one arm. In this study, delamination at the curved region is studied experimentally and computationally by using a simplified model material consisting of two L-shaped polycarbonate plates bonded together. The...
Citation Formats
B. Gozluklu and D. Çöker, “MODELING OF DYNAMIC DELAMINATION IN L-SHAPED COMPOSITE BRACKETS,” 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41407.